3 resultados para Tall buildings Design and construction
em Universidad de Alicante
Resumo:
Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.
Resumo:
Nowadays, on a global level, the Higher Education System has a complex and broad horizon of curricular tools to use in the teaching and learning process. In addition to these new educational instruments, full of possibilities, we face specific socio-economic conditions that affect in a significantly way the Curriculum Development in certain knowledge areas (areas traditionally built on a methodology based on a physical presence of students in the classroom). Some areas such as Restoration, Rehabilitation or Construction Pathologies, and the construction sector in general, require very defined and particular knowledge that only a small number of experts claim as specialized training. All these aspects condition the teaching methodology performed in a physical classroom at a university campus (the only option used until recent years) and made us consider the integration of online teaching in these areas too. The present work shows the teaching methodology used for the development of two online courses, where we offer distance learning for "highly specialized" formation in the Edification area (an area where traditionally there was only classroom training). At the beginning, both courses were designed by classroom training, but got a really small number of applications due to the specialized topic proposed. Later, we proposed a "Curriculum Redesign" of the contents, offering an online modality, which implied a significant demand both within and outside the university area. A notable feature of this educational experience is the great spectrum opened for attendees of both courses in the online version. This situation improved significantly the "Curriculum Development" for the student and implied an interesting new proposal on the offered contents and materials (what would have been really difficult to get in a face to face classroom). In conclusion, the absence of certain types of specialized contents in the academic university curricula makes essential to raise new methodologies to save the gap in this area through additional training courses as those analyzed in this paper. Thus, our experience opens a debate on the appropriateness of implementing online training in relation to the face to face training in constructive content subjects and, especially, presents a new scheme, not without controversy, for the curriculum design.
Resumo:
Introducing teaching about healthy solutions in buildings and BIM has been a challenge for the University of Alicante. Teaching attached to very tighten study plans conditioned the types of methods that could be used in the past. The worldwide situation of crisis that especially reached Spain and the bursting of the housing bubble generated a lack of employment that reached universities where careers related to construction, Architecture and Architectural Technologist, suffered a huge reduction in the number of students enrolled. In the case of the University of Alicante, students’ enrolment for Architectural Technology reached an 80% reduction. The necessity of a reaction against this situation made the teachers be innovative and use the new Bologna adapted study plans to develop new teaching experiences introducing new concepts: people wellbeing in buildings and BIM. Working with healthy solutions in buildings provided new approaches for building design and construction as an alternative to sustainability. For many years sustainability was the concept that applied to housing gave buildings an added value and the possibility of having viability in a very complex scenario. But after lots of experiences, the approved methodologies for obtaining sustainable housing were ambiguous and at the end, investors, designers, constructors and purchasers cannot find real and validated criteria for obtaining an effective sustainable house. It was the moment to work with new ideas and concepts and start facing buildings from the users’ point of view. At the same time the development of new tools, BIM, has opened a wide range of opportunities, innovative and suggestive, that allows simulation and evaluation of many building factors. This paper describes the research in teaching developed by the University of Alicante to adapt the current study plans, introducing work with healthy solutions in buildings and the use of BIM, with the aim of attracting students by improving their future employability. Pilot experiences have been carried out in different subjects based on the work with projects and case studies under an international frame with the cooperation of different European partner universities. The use of BIM tools, introduced in 2014, solved the problems that appeared in some subjects, mainly building construction, and helped with the evaluation of some healthy concepts that presented difficulties until this moment as knowledge acquired by the students was hard to be evaluated. The introduction of BIM tools: Vasari, FormIt, Revit and Light Control among others, allowed the study of precise healthy concepts and provided the students a real understand of how these different parameters can condition a healthy architectural space. The analysis of the results showed a clear acceptance by the students and gave teachers the possibility of opening new research lines. At the same time, working with BIM tools to obtain healthy solutions in building has been a good option to improve students’ employability as building market in Spain is increasing the number of specialists in BIM with a wider knowledge.