3 resultados para Tagging recommender system

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows a system about the recognition of temporal expressions in Spanish and the resolution of their temporal reference. For the identification and recognition of temporal expressions we have based on a temporal expression grammar and for the resolution on an inference engine, where we have the information necessary to do the date operation based on the recognized expressions. For further information treatment, the output is proposed by means of XML tags in order to add standard information of the resolution obtained. Different kinds of annotation of temporal expressions are explained in another articles [WILSON2001][KATZ2001]. In the evaluation of our proposal we have obtained successful results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great amount of text produced every day in the Web turned it as one of the main sources for obtaining linguistic corpora, that are further analyzed with Natural Language Processing techniques. On a global scale, languages such as Portuguese - official in 9 countries - appear on the Web in several varieties, with lexical, morphological and syntactic (among others) differences. Besides, a unified spelling system for Portuguese has been recently approved, and its implementation process has already started in some countries. However, it will last several years, so different varieties and spelling systems coexist. Since PoS-taggers for Portuguese are specifically built for a particular variety, this work analyzes different training corpora and lexica combinations aimed at building a model with high-precision annotation in several varieties and spelling systems of this language. Moreover, this paper presents different dictionaries of the new orthography (Spelling Agreement) as well as a new freely available testing corpus, containing different varieties and textual typologies.