4 resultados para TWO-NEUTRON BREAK-UP
em Universidad de Alicante
Resumo:
Sandstone petrography and mudstone mineralogy and geochemistry of Triassic mudstones and sandstones from continental redbeds of the Malaguide Complex (Betic Cordillera, southern Spain) provide useful information on provenance, palaeoclimate and geodynamics during the early stages of the Pangea break-up, and on their diagenetic evolution. The sandstones are quartzarenites to sub-litharenites, with minor lithic fragments and rare feldspars. The mudstone samples show a PAAS like elemental distribution. The samples likely record recycling processes from their metasedimentary basement rocks that significantly affected the weathering indices, and monitors cumulative effects, including a first cycle of weathering at the source rocks. Sandstone composition and chemical–mineralogical features of mudstones record a provenance derived from continental block and recycled orogen that were weathered under warm and episodically wet climate. Source areas were located towards the east of the present-day Malaguide outcrops, and were formed by fairly silicic rock types, made up mainly of Palaezoic metasedimentary rocks, similar to those of the Paleozoic underlying series, with subordinate contributions from magmatic–metamorphic sources, and a rare supply from mafic metavolcanic rocks. Clay-mineral distribution of mudstones is dominated by illite and illite/smectite mixed-layer that result from differences in provenance, weathering, and burial/temperature history. Illite crystallinity values, illitization of kaolinite, occurrence of typical authigenic minerals and apatite fission-track studies, coupled with a subsidence analysis of the whole Malaguide succession suggest burial depths of at least 4–6 km with temperatures of 140–160 °C, typical of the burial diagenetic stage, and confirm the Middle Miocene exhumation of the Betic Internal Domain tectonic stack topped by the Malaguide Complex.
Resumo:
Purpose: To evaluate and characterize the clinical profile of young asymptomatic or minimally symptomatic patients without diagnosis of dry eye but showing signs compatible with dry eye syndrome (DES). Methods: Prospective study including a total of 50 consecutive subjects with ages ranging from 18 to 40 years that were identified as asymptomatic or minimally symptomatic by means of the Ocular Surface Disease Index (OSDI) (score of <22). In all patients, a complete battery of tests for the diagnosis of DES was performed including the evaluation of the tear film break-up time (TFBUT), the level of corneal and conjunctival staining, and the eyelid and Meibomian morphology. Results: The OSDI score was significantly higher in women than in men (median: 12.5 vs. 5.3, P=0.01). Low grades of ocular surface staining, dysfunction of Meibomian gland expression, and alteration of quality of Meibomian secretions were observed in 56%, 58%, and 84% of eyes, respectively. More eyes with some dysfunction of Meibomian gland expressibility had a TFBUT less than 5 sec (P=0.033). A statistically significant difference in the OSDI score was found between patients with and without systemic allergies (P=0.036) and between male and female (P=0.01). Likewise, the OSDI score was significantly higher in those women wearing contact lenses compared with those not wearing them (P=0.012). Conclusions: Asymptomatic or minimally symptomatic young subjects may present low grades of clinical signs compatible with DES, with a trend to more symptomatology in women and allergic patients. These outcomes should be confirmed in future studies with larger samples.
Resumo:
Over the past decade, the numerical modeling of the magnetic field evolution in astrophysical scenarios has become an increasingly important field. In the crystallized crust of neutron stars the evolution of the magnetic field is governed by the Hall induction equation. In this equation the relative contribution of the two terms (Hall term and Ohmic dissipation) varies depending on the local conditions of temperature and magnetic field strength. This results in the transition from the purely parabolic character of the equations to the hyperbolic regime as the magnetic Reynolds number increases, which presents severe numerical problems. Up to now, most attempts to study this problem were based on spectral methods, but they failed in representing the transition to large magnetic Reynolds numbers. We present a new code based on upwind finite differences techniques that can handle situations with arbitrary low magnetic diffusivity and it is suitable for studying the formation of sharp current sheets during the evolution. The code is thoroughly tested in different limits and used to illustrate the evolution of the crustal magnetic field in a neutron star in some representative cases. Our code, coupled to cooling codes, can be used to perform long-term simulations of the magneto-thermal evolution of neutron stars.
Resumo:
Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy in the inferred properties of initial distributions that arises from single-band studies. In this context, we extend previous works to include X-ray thermal emitting pulsars within the same evolutionary model as radio-pulsars. We find that the cumulative distribution of the number of X-ray pulsars can be well reproduced by several models that, simultaneously, reproduce the characteristics of the radio-pulsar distribution. However, even considering the most favourable magneto-thermal evolution models with fast field decay, lognormal distributions of the initial magnetic field overpredict the number of visible sources with periods longer than 12 s. We then show that the problem can be solved with different distributions of magnetic field, such as a truncated lognormal distribution, or a binormal distribution with two distinct populations. We use the observational lack of isolated neutron stars (NSs) with spin periods P > 12 s to establish an upper limit to the fraction of magnetars born with B > 1015 G (less than 1 per cent). As future detections keep increasing the magnetar and high-B pulsar statistics, our approach can be used to establish a severe constraint on the maximum magnetic field at birth of NSs.