6 resultados para TEFLON-TREATED CARBON CLOTH
em Universidad de Alicante
Resumo:
This work focuses on the preparation of flexible ruthenium oxide containing activated carbon cloth by electrodeposition. Different electrodeposition methods have been used, including chronoamperometry, chronopotentiometry and cyclic voltammetry. The electrochemical properties of the obtained materials have been measured. The results show that the potentiostatic method allows preparing composites with higher specific capacitance than the pristine activated carbon cloth. The capacitance values measured by cyclic voltammetry at 10 mV s−1 and 1 V of potential window were up to 160 and 180 F g−1. This means an improvement of 82% and 100% with respect to the capacitance of the pristine activated carbon cloth. This excellent capacitance enhancement is attributed to the small particle size (4–5 nm) and the three-dimensional nanoporous network of the ruthenium oxide film which allows reaching very high degree of oxide utilization without blocking the pore structure of the activated carbon cloth. In addition, the electrodes maintain the mechanical properties of the carbon cloth and can be useful for flexible devices.
Resumo:
This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.
Resumo:
The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.
Resumo:
A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.
Resumo:
Hydrogenated amorphous carbon (a-C:H) films were grown on a poly(lactic acid) (PLA) substrate by means of a radiofrequency plasma-enhanced chemical vapour deposition (rf-PECVD) technique with different deposition times (5, 20 and 40 min). The main goal of this treatment was to increase the barrier properties of PLA, maintaining its original transparency and colour as well as controlling interactions with food simulants for packaging applications. Morphological, chemical, and mechanical properties of PLA/a-C:H systems were evaluated while permeability and overall migration tests were performed in order to determine the effect of the plasma treatment on the gas-barrier properties of PLA films and their application in food packaging. Morphological results suggested a good adhesion of the deposited layers onto the polymer surface and the samples treated for 5 and 20 min only slightly darkened the PLA film. X-ray photoelectron spectroscopy revealed that the structural properties of the carbon layer deposited onto the PLA film depend on the exposure time. PLA/a-C:H system treated for 5 min showed the highest barrier properties, while none of the studied samples exceeded the migration limit established by the current legislation, suggesting the suitability of these materials in packaging applications.
Resumo:
The immobilization of the chiral complex RhDuphos, by electrostatic or π–π (adsorption) interactions, on carbon nanotubes and carbon xerogels is investigated. To promote such interactions, the supports were either oxidized or heat treated to create carboxylic type surface groups or an apolar surface, respectively. The catalysts were tested in the hydrogenation of methyl 2-acetamidoacrylate. The prepared hybrid catalysts are less active than the homogeneous RhDuphos, but most of them show a high enantioselectivity and the one prepared with the oxidized carbon xerogel is also reusable, being able to give a high substrate conversion, keeping as well a high enantioselectivity. The anchorage by electrostatic interactions is more interesting than the anchorage by π–π interactions, as the π–π adsorption method produces a modification of the metal complex structure leading to an active hybrid catalyst but without enantioselectivity. The creation of carboxylic groups on the support surface has led to some hindering of the complex leaching.