3 resultados para Surface geometry

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ∼6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.