5 resultados para Surface content
em Universidad de Alicante
Resumo:
A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.
Resumo:
Very different carbon materials have been used as support in the preparation of supported ionic liquid phase samples (SILP). Some of them have been oxidized, either strongly (with ammonium persulfate solution) or weakly (with air at 300 °C, 2 h). The purpose is to establish which properties of the supports (e.g., porosity -volume and type-, surface area, oxygen surface chemistry and morphology) determine the IL adsorption capacity and the stability (immobilization) of the supported IL phase. The ionic liquid used in this work is 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]). For each support, samples with different amounts of ionic liquid have been prepared. The maximum IL that can be loaded depends mainly on the total pore volume of the supports. For comparable pore volumes, the porosity type and the oxygen surface content have no influence on the IL loading. The supported IL fills most of the pores, leaving some blocked porosity. The stability of the supported IL phase (especially important for its subsequent use in catalysis) has been tested in water under general hydrogenation conditions (60 °C and 10 bar H2). In general, leaching is low but it increases with the amount of IL loaded and with the oxidation treatments of the supports.
Resumo:
We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.
Resumo:
Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.
Resumo:
The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.