3 resultados para Subjective word sense disambiguation

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se presenta un método para la detección de subjetividad a nivel de oraciones basado en la desambiguación subjetiva del sentido de las palabras. Para ello se extiende un método de desambiguación semántica basado en agrupamiento de sentidos para determinar cuándo las palabras dentro de la oración están siendo utilizadas de forma subjetiva u objetiva. En nuestra propuesta se utilizan recursos semánticos anotados con valores de polaridad y emociones para determinar cuándo un sentido de una palabra puede ser considerado subjetivo u objetivo. Se presenta un estudio experimental sobre la detección de subjetividad en oraciones, en el cual se consideran las colecciones del corpus MPQA y Movie Review Dataset, así como los recursos semánticos SentiWordNet, Micro-WNOp y WordNet-Affect. Los resultados obtenidos muestran que nuestra propuesta contribuye de manera significativa en la detección de subjetividad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo presentamos unos resultados preliminares obtenidos mediante la aplicación de una nueva técnica de construcción de grafos semánticos a la tarea de desambiguación del sentido de las palabras en un entorno multilingüe. Gracias al uso de esta técnica no supervisada, inducimos los sentidos asociados a las traducciones de la palabra ambigua considerada en la lengua destino. Utilizamos las traducciones de las palabras del contexto de la palabra ambigua en la lengua origen para seleccionar el sentido más probable de la traducción. El sistema ha sido evaluado sobre la colección de datos de una tarea de desambiguación multilingüe que se propuso en la competición SemEval-2010, consiguiendo superar los resultados de todos los sistemas no supervisados que participaron en aquella tarea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly.