2 resultados para Sub-networks
em Universidad de Alicante
Resumo:
Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.
Resumo:
This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.