3 resultados para Study of Society and Environment (SOSE)

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the evolution with temperature of the qualitative composition of the gases evolved in the pyrolysis of glycerol, tobacco and tobacco–glycerol mixtures has been studied. The pathways for different types of compounds (i.e., water, CO, CO2, carbonylic compounds, alkenyl or alkyl groups containing compounds, alcohols and phenols and aromatic compounds) have been established, and their relationship with the different reaction steps involved in the pyrolysis process have been suggested. The comparison among the behavior observed in the pyrolysis of tobacco, glycerol and a mixture glycerol–tobacco has permitted us to suggest possible interactions between tobacco and glycerol affecting the composition of the gases evolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of imidazolium and benzimidazolium salts with hydroxyl or carboxylate functions has been achieved using straightforward synthetic pathways. These salts in combination with palladium(II) acetate give active catalytic systems for Suzuki reaction. A comparative study has been performed, which has revealed that both the heterocycle and the functional group are important for the catalytic activity and stability of the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.