2 resultados para Structural behavior of thin plates
em Universidad de Alicante
Resumo:
In the last few decades, the use of cast in situ reinforced concrete sandwich panels for the construction of low- to mid-rise buildings has become more and more widespread due to several interesting properties of this construction technique, such as fast construction and high thermal and acoustic performances. Nonetheless the level of knowledge of the structural behavior of systems made of squat reinforced concrete sandwich panels is still not so consolidated, especially with reference to the seismic response, due to the lack of experimental studies. In recent years, while various experimental tests have been conducted on single panels aimed at assessing their seismic capacity, only few tests have been carried out on more complex structural systems. In this paper, the experimental results of a series of shaking-table tests performed on a full-scale 3-storey building are presented in detail. The main goal is to give to the scientific community the possibility of develop independent interpretation of these experimental results. An in-depth interpretation of the discrepancies between the analytical predictions and the experimental results is beyond the objective of this paper and is still under development. Nonetheless, preliminary interpretations indicate that both the stiffness and the strength of the building under dynamic excitation appear quite superior with respect to those expected from the results of previous pseudo-static cyclic tests conducted on simple specimens.
Resumo:
This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).