3 resultados para Strains and stresses Testing
em Universidad de Alicante
Resumo:
Background: The Clinical Learning Environment, Supervision and Nurse Teacher scale is a reliable and valid instrument to evaluate the quality of the clinical learning process in international nursing education contexts. Objectives: This paper reports the development and psychometric testing of the Spanish version of the Clinical Learning Environment, Supervision and Nurse Teacher scale. Design: Cross-sectional validation study of the scale. Setting: 10 public and private hospitals in the Alicante area, and the Faculty of Health Sciences (University of Alicante, Spain). Participants: 370 student nurses on clinical placement (January 2011–March 2012). Methods: The Clinical Learning Environment, Supervision and Nurse Teacher scale was translated using the modified direct translation method. Statistical analyses were performed using PASW Statistics 18 and AMOS 18.0.0 software. A multivariate analysis was conducted in order to assess construct validity. Cronbach’s alpha coefficient was used to evaluate instrument reliability. Results: An exploratory factorial analysis identified the five dimensions from the original version, and explained 66.4% of the variance. Confirmatory factor analysis supported the factor structure of the Spanish version of the instrument. Cronbach’s alpha coefficient for the scale was .95, ranging from .80 to .97 for the subscales. Conclusion: This version of the Clinical Learning Environment, Supervision and Nurse Teacher scale instrument showed acceptable psychometric properties for use as an assessment scale in Spanish-speaking countries.
Resumo:
This RILEM Technical Recommendation intends to give a general description of methods of sampling for obtaining chloride concentration profiles in concrete, applicable both for laboratory cast concrete specimens, for concrete cores taken from structures and for testing on site. These sampling procedures may be applied for obtaining concentration profiles of any other chemical species present in concrete.
Resumo:
Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifungal activity in spite of high ROS intracellular levels. With lactate instead of glucose, C and N limitation increased N. crassa sensitivity to chitosan further (4-fold) than what glucose did. Nutrient limitation also increased sensitivity of filamentous fungi and yeast human pathogens to chitosan. For Fusarium proliferatum, lowering 100-fold C and N content in the growth medium, increased 16-fold chitosan sensitivity. Similar results were found for Candida spp. (including fluconazole resistant strains) and Cryptococcus spp. Severe C and N limitation increased chitosan antifungal activity for all pathogens tested. Chitosan at 100 μg ml-1 was lethal for most fungal human pathogens tested but non-toxic to HEK293 and COS7 mammalian cell lines. Besides, chitosan increased 90% survival of Galleria mellonella larvae infected with C. albicans. These results are of paramount for developing chitosan as antifungal.