5 resultados para Step-by-step

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In order to deepen the knowledge about the origin of the CO preoxidation process and the intrinsic catalytic activity of Pt superficial steps toward CO oxidation, a series of CO stripping experiments were performed on stepped Pt electrodes in acidic medium. For the occurrence of CO preoxidation, it was found that it arises (reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with COads; (3) in the presence of traces of CO in solution; (4) in the presence of surface steps. If any of these four conditions is not satisfied, the CO preoxidation pathway does not appear, even though the steps on the electrode surface are completely covered by CO. By controlling the removal of the CO adlayer (voltammetrically), we show that once the CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are released earlier than the (110) step sites. Moreover, if (110) steps are selectively decorated with CO, its oxidation occurs only at potentials ∼150 mV higher than the CO preoxidation peak. Our results systematically demonstrate that step sites are less active to oxidize CO than those ones responsible for the CO preoxidation process. Once the sites responsible for the CO preoxidation are made free, there is no apparent motion of the remaining adsorbed CO layer, suggesting that the activation of the surface controls the whole process, rather than the diffusion of COads toward hypothetically “most active sites”. Voltammetric and chronoamperometric experiments performed on partially covered CO adlayers suggest that adsorbed CO behave as a motionless species during its oxidation, in which the CO adlayer is removed piece by piece. By means of in situ FTIR experiments, the stretching frequency of CO selectively adsorbed on (110) step sites was examined. Band frequency results confirm that those molecules adsorbed on steps are fully coupled with the adsorbed CO on (111) terraces when the surface reaches full coverage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this review, we detail the efforts performed to couple the purification and the immobilization of industrial enzymes in a single step. The use of antibodies, the development of specific domains with affinity for some specific supports will be revised. Moreover, we will discuss the use of domains that increase the affinity for standard matrices (ionic exchangers, silicates). We will show how the control of the immobilization conditions may convert some unspecific supports in largely specific ones. The development of tailor-made heterofunctional supports as a tool to immobilize–stabilize–purify some proteins will be discussed in deep, using low concentration of adsorbent groups and a dense layer of groups able to give an intense multipoint covalent attachment. The final coupling of mutagenesis and tailor made supports will be the last part of the review.