3 resultados para Steam-boiler inspection

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-, ZrO2-, and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70,600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2, which showed the best performance in the stability test, also produced the highest H2 yield above 600 °C, followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM, XPS, and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions, as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.