5 resultados para Static average-case analysis
em Universidad de Alicante
Resumo:
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
Resumo:
A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.
Resumo:
The purpose of this paper is to analyze the quasi-elastic deformational behavior that has been induced by groundwater withdrawal of the Tertiary detrital aquifer of Madrid (Spain). The spatial and temporal evolution of ground surface displacement was estimated by processing two datasets of radar satellite images (SAR) using Persistent Scatterer Interferometry (PSI). The first SAR dataset was acquired between April 1992 and November 2000 by ERS-1 and ERS-2 satellites, and the second one by the ENVISAT satellite between August 2002 and September 2010. The spatial distribution of PSI measurements reveals that the magnitude of the displacement increases gradually towards the center of the well field area, where approximately 80 mm of maximum cumulated displacement is registered. The correlation analysis made between displacement and piezometric time series provides a correlation coefficient greater than 85% for all the wells. The elastic and inelastic components of measured displacements were separated, observing that the elastic component is, on average, more than 4 times the inelastic component for the studied period. Moreover, the hysteresis loops on the stress–strain plots indicate that the response is in the elastic range. These results demonstrate the quasi-elastic behavior of the aquifer. During the aquifer recovery phase ground surface uplift almost recovers from the subsidence experienced during the preceding extraction phase. Taking into account this unique aquifer system, a one dimensional elastic model was calibrated in the period 1997–2000. Subsequently, the model was used to predict the ground surface movements during the period 1992–2010. Modeled displacements were validated with PSI displacement measurements, exhibiting an error of 13% on average, related with the inelastic component of deformation occurring as a long-term trend in low permeability fine-grained units. This result further demonstrates the quasi-elastic deformational behavior of this unique aquifer system.
Resumo:
The new Spanish legislation in Energy Saving, similar to European regulation, provides new technical requirements to adequate technical solutions used in integral rehabilitation of existing buildings. The aim of this paper is to present, analyze and discuss the main thermal insulation constructive solutions best suited to a Mediterranean climate, and conclude on their suitability under the legislation in Energy Saving. The proposed methodology is based on the most usual constructive solutions in integral rehabilitation of buildings by analyzing their outstanding design features, by studying its construction details and then by applying the software provided by the Spanish legislation of energy efficiency in buildings. The results of the study evaluate and classify several solutions for façade rehabilitation according to energy efficiency criteria and their suitability for this type of weather, verifying the necessity of using software applications in energy saving for the proper design of constructive solutions in building rehabilitation.
Resumo:
A comprehensive environmental monitoring program was conducted in the Ojo Guareña cave system (Spain), one of the longest cave systems in Europe, to assess the magnitude of the spatiotemporal changes in carbon dioxide gas (CO2) in the cave–soil–atmosphere profile. The key climate-driven processes involved in gas exchange, primarily gas diffusion and cave ventilation due to advective forces, were characterized. The spatial distributions of both processes were described through measurements of CO2 and its carbon isotopic signal (δ13C[CO2]) from exterior, soil and cave air samples analyzed by cavity ring-down spectroscopy (CRDS). The trigger mechanisms of air advection (temperature or air density differences or barometric imbalances) were controlled by continuous logging systems. Radon monitoring was also used to characterize the changing airflow that results in a predictable seasonal or daily pattern of CO2 concentrations and its carbon isotopic signal. Large daily oscillations of CO2 levels, ranging from 680 to 1900 ppm day−1 on average, were registered during the daily oscillations of the exterior air temperature around the cave air temperature. These daily variations in CO2 concentration were unobservable once the outside air temperature was continuously below the cave temperature and a prevailing advective-renewal of cave air was established, such that the daily-averaged concentrations of CO2 reached minimum values close to atmospheric background. The daily pulses of CO2 and other tracer gases such as radon (222Rn) were smoothed in the inner cave locations, where fluctuation of both gases was primarily correlated with medium-term changes in air pressure. A pooled analysis of these data provided evidence that atmospheric air that is inhaled into dynamically ventilated caves can then return to the lower troposphere as CO2-rich cave air.