2 resultados para Spatial and Temporal Pattern
em Universidad de Alicante
Resumo:
Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.
Resumo:
Background: The pupillary light reflex characterizes the direct and consensual response of the eye to the perceived brightness of a stimulus. It has been used as indicator of both neurological and optic nerve pathologies. As with other eye reflexes, this reflex constitutes an almost instantaneous movement and is linked to activation of the same midbrain area. The latency of the pupillary light reflex is around 200 ms, although the literature also indicates that the fastest eye reflexes last 20 ms. Therefore, a system with sufficiently high spatial and temporal resolutions is required for accurate assessment. In this study, we analyzed the pupillary light reflex to determine whether any small discrepancy exists between the direct and consensual responses, and to ascertain whether any other eye reflex occurs before the pupillary light reflex. Methods: We constructed a binocular video-oculography system two high-speed cameras that simultaneously focused on both eyes. This was then employed to assess the direct and consensual responses of each eye using our own algorithm based on Circular Hough Transform to detect and track the pupil. Time parameters describing the pupillary light reflex were obtained from the radius time-variation. Eight healthy subjects (4 women, 4 men, aged 24–45) participated in this experiment. Results: Our system, which has a resolution of 15 microns and 4 ms, obtained time parameters describing the pupillary light reflex that were similar to those reported in previous studies, with no significant differences between direct and consensual reflexes. Moreover, it revealed an incomplete reflex blink and an upward eye movement at around 100 ms that may correspond to Bell’s phenomenon. Conclusions: Direct and consensual pupillary responses do not any significant temporal differences. The system and method described here could prove useful for further assessment of pupillary and blink reflexes. The resolution obtained revealed the existence reported here of an early incomplete blink and an upward eye movement.