3 resultados para Spatial Prediction Maps
em Universidad de Alicante
Resumo:
The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.
Resumo:
Objetivo: Evaluar la variación espacial de la exposición a dióxido de nitrógeno (NO2) en la ciudad de Valencia y su relación con la privación socioeconómica y la edad. Métodos: La población por sección censal (SC) procede del Instituto Nacional de Estadística. Los niveles de NO2 se midieron en 100 puntos del área de estudio, mediante captadores pasivos, en tres campañas entre 2002 y 2004. Se utilizó regresión por usos del suelo (LUR) para obtener el mapa de los niveles de NO2. Las predicciones del LUR se compararon con las proporcionadas por: a) el captador más cercano de la red de vigilancia, b) el captador pasivo más cercano, c) el conjunto de captadores en un entorno y d) kriging. Se asignaron niveles de contaminación para cada SC. Se analizó la relación entre los niveles de NO2, un índice de privación con cinco categorías y la edad (≥65 años). Resultados: El modelo LUR resultó el método más preciso. Más del 99% de la población superó los niveles de seguridad propuestos por la Organización Mundial de la Salud. Se encontró una relación inversa entre los niveles de NO2 y el índice de privación (β = –2,01 μg/m3 en el quintil de mayor privación respecto al de menor, IC95%: –3,07 a –0,95), y una relación directa con la edad (β = 0,12 μg/m3 por incremento en unidad porcentual de población ≥65 años, IC95%: 0,08 a 0,16). Conclusiones: El método permitió obtener mapas de contaminación y describir la relación entre niveles de NO2 y características sociodemográficas.
Resumo:
A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.