5 resultados para Sorption isotherms

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Naproxen-C14H14O3 is a nonsteroidal anti-inflammatory drug which has been found at detectable concentrations in wastewater, surface water, and groundwater. Naproxen is relatively hydrophilic and is in anionic form at pH between 6 and 8. In this study, column experiments were performed using an unconsolidated aquifer material from an area near Barcelona (Spain) to assess transport and reaction mechanisms of Naproxen in the aquifer matrix under different pore water fluxes. Results were evaluated using HYDRUS-1D, which was used to estimate transport parameters. Batch sorption isotherms for Naproxen conformed with the linear model with a sorption coefficient of 0.42 (cm3 g−1), suggesting a low sorption affinity. Naproxen breakthrough curves (BTCs) measured in soil columns under steady-state, saturated water flow conditions displayed similar behavior, with no apparent hysteresis in sorption or dependence of retardation (R, 3.85-4.24) on pore water velocities. Soil sorption did not show any significant decrease for increasing flow rates, as observed from Naproxen recovery in the effluent. Sorption parameters estimated by the model suggest that Naproxen has a low sorption affinity to aquifer matrix. Most sorption of Naproxen occurred on the instantaneous sorption sites, with the kinetic sorption sites representing only about 10 to 40% of total sorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work refers to clay–graphene nanomaterials prepared by a green way using caramel from sucrose and two types of natural clays (montmorillonite and sepiolite) as precursors, with the aim of evaluating their potential use in hydrogen storage. The impregnation of the clay substrates by caramel in aqueous media, followed by a thermal treatment in the absence of oxygen of these clay–caramel intermediates gives rise to graphene-like materials, which remain strongly bound to the silicate support. The nature of the resulting materials was characterized by different techniques such as XRD, Raman spectroscopy and TEM, as well as by adsorption isotherms of N2, CO2 and H2O. These carbon–clay nanocomposites can act as adsorbents for hydrogen storage, achieving, at 298 K and 20 MPa, over 0.1 wt% of hydrogen adsorption excess related to the total mass of the system, and a maximum value close to 0.4 wt% of hydrogen specifically related to the carbon mass. The very high isosteric heat for hydrogen sorption determined from adsorption isotherms at different temperatures (14.5 kJ mol−1) fits well with the theoretical values available for hydrogen storage on materials that show a strong stabilization of the H2 molecule upon adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.