4 resultados para Sorption and desorptions

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naproxen-C14H14O3 is a nonsteroidal anti-inflammatory drug which has been found at detectable concentrations in wastewater, surface water, and groundwater. Naproxen is relatively hydrophilic and is in anionic form at pH between 6 and 8. In this study, column experiments were performed using an unconsolidated aquifer material from an area near Barcelona (Spain) to assess transport and reaction mechanisms of Naproxen in the aquifer matrix under different pore water fluxes. Results were evaluated using HYDRUS-1D, which was used to estimate transport parameters. Batch sorption isotherms for Naproxen conformed with the linear model with a sorption coefficient of 0.42 (cm3 g−1), suggesting a low sorption affinity. Naproxen breakthrough curves (BTCs) measured in soil columns under steady-state, saturated water flow conditions displayed similar behavior, with no apparent hysteresis in sorption or dependence of retardation (R, 3.85-4.24) on pore water velocities. Soil sorption did not show any significant decrease for increasing flow rates, as observed from Naproxen recovery in the effluent. Sorption parameters estimated by the model suggest that Naproxen has a low sorption affinity to aquifer matrix. Most sorption of Naproxen occurred on the instantaneous sorption sites, with the kinetic sorption sites representing only about 10 to 40% of total sorption.