4 resultados para Soil-pile Interaction
em Universidad de Alicante
Resumo:
The effect of foundation embedment on settlement calculation is a widely researched topic in which there is no scientific consensus regarding the magnitude of settlement reduction. In this paper, a non-linear three dimensional Finite Element analysis has been performed with the aim of evaluating the aforementioned effect. For this purpose, 1800 models were run considering different variables, such as the depth and dimensions of the foundation and the Young’s modulus and Poisson’s ratio of the soil. The settlements from models with foundations at surface level and at depth were then compared and the relationship between them established. The statistical analysis of this data allowed two new expressions, with a mean maximum error of 1.80%, for the embedment influence factor of a foundation to be proposed and these to be compared with commonly used corrections. The proposed equations were validated by comparing the settlements calculated with the proposed influence factors and the true settlements measured in several real foundations. From the comprehensive study of all modelled cases, an improved approach, when compared to those proposed by other authors, for the calculation of the true elastic settlements of an embedded foundation is proposed.
Resumo:
This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.
Resumo:
Las fórmulas basadas en la teoría de la elasticidad son ampliamente utilizadas para el cálculo de asientos de cimentaciones, ya que la totalidad de la normativa geotécnica recomienda su empleo. No obstante, estos métodos no cubren todas las situaciones geotécnicamente posibles ya que frecuentemente las condiciones geológicas son complejas. En este trabajo se analiza la influencia de la presencia de una capa rígida inclinada en los asientos elásticos de una cimentación superficial. Para ello se han resuelto 273 modelos tridimensionales no lineales de elementos finitos, variando los parámetros clave del problema: la inclinación y la profundidad de la capa rígida y la rigidez de la cimentación. Finalmente, se ha realizado un análisis estadístico de los resultados de los modelos y se ha propuesto una fórmula que puede ser utilizada en el cálculo de asientos por métodos elásticos, para tener en consideración la presencia de una capa rígida inclinada en profundidad.
Resumo:
Aim of study. Orchidaceae has the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development. Area of study. The work was carried out in n the two most important natural parks in Alicante (Font Roja and Sierra Mariola), in South-eastern of Spain. Material and Methods. We designed a molecular tool to monitor the presence of Russula spp. in soil and orchids roots, combined with phytosociological methods. Main results. Using a PCR-based method, we detected the presence in the soil and Limodorum abortivum orchid roots of the mycorrhizal fungi Russula spp. The species with highest coverage was Quercus rotundifolia in areas where the orchid was present. Research highlights. We present a useful tool based on PCR to detect the presence of Russula spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi Russula spp. in roots of the species Limodorum and the interaction between these fungal species and Quercus ilex trees in Mediterranean forest environments.