3 resultados para Soil recovery
em Universidad de Alicante
Resumo:
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.
Resumo:
In this study, we seeded a native plant species and applied a mulch of chopped wood originating from the same burned area to avoid the establishment of invasive species. We evaluated four treatments: (1) seeding, (2) mulch, (3) seeding and mulch, and (4) control. Our objective was to increase plant recovery and to minimize the soil erosion and degradation. The study was conducted in Alicante, Spain in Torremanzanas forest of the semi-arid Mediterranean bioclimatic area after the wildfire of November, 2002. During three years of monitoring, we find that combined treatment: seeding and mulch increased the post fire plant recovery 20% approximately more than the rest of treatments and the control plots. We also found that seven months after treating mulch and seeding and mulch treatments presented a gain of soil: +5.18 to + 5.24 mm while the seeding treatment and control plots presented soil loss rates of: −0.48 to −0.49 mm. In addition, mulch treatment significantly decreased soil compaction to the half, and increased the infiltration capacity to 40 ml.mn−1 more than in plots without mulch, as well as increased the soil respiration to the double compared with no mulch plots. Work in progress confirms the positive effect of chopped wood as mulching treatment with or without seeding on the soil protection against soil erosion, and the amelioration of bio-physical properties after wildfires in the Mediterranean semi-arid burned areas.
Resumo:
This study analyses the effect of successional stage after farmland terrace abandonment on post-fire plant recovery in a Mediterranean landscape. Specific objectives of the study were to (1) compare fuel characteristics and fire severity in three successional stages after farmland abandonment – dry grassland, dense shrubland and pine stands; (2) analyse the effect of pre-fire successional stage and fire severity on vegetation recovery and (3) analyse the relative vulnerability (i.e. potential for ecosystem shift and soil degradation) to wildfires of the successional stages. We assessed 30 abandoned terraces (15 unburned and 15 burned), with diverse successional stages, on the Xortà Range (south-east Spain). Post-fire recovery was measured 1, 4 and 7 years after fire. The successional stages varied in aboveground biomass, litter amount, vertical structure and continuity of plant cover, and flammability. Dry grassland showed the lowest fire severity, whereas no differences in severity were found between shrubland and pine stands. One year after fire, plant cover was inversely related to fire severity; this relationship attenuated with time after fire. Post-fire recovery of pine stands and shrubland led in both cases to shrublands, contributing to landscape homogenisation. The pine stands showed the largest changes in composition due to fire and the lowest post-fire plant recovery – a sign of high vulnerability to fire.