8 resultados para Skyrmion textures
em Universidad de Alicante
Resumo:
We study the quantum spin waves associated to skyrmion textures. We show that the zero-point energy associated to the quantum spin fluctuations of a noncollinear spin texture produce Casimir-like magnetic fields. We study the effect of these Casimir fields on the topologically protected noncollinear spin textures known as skyrmions. In a Heisenberg model with Dzyalonshinkii-Moriya interactions, chosen so the classical ground state displays skyrmion textures, we calculate the spin-wave spectrum, using the Holstein-Primakoff approximation, and the associated zero-point energy, to the lowest order in the spin-wave expansion. Our calculations are done both for the single-skyrmion case, for which we obtain a discrete set of skyrmion bound states, as well as for the skyrmion crystal, for which the resulting spectrum gives the spin-wave bands. In both cases, our calculations show that the Casimir magnetic field contributes up to 10% of the total Zeeman energy necessary to delete the skyrmion texture with an applied field.
Resumo:
En este artículo se muestra una aplicación de la microtomografía computerizada de Rayos X (microCT-RX) como técnica no destructiva útil para la caracterización del interior de estructuras sin necesidad de perder la muestra. Gracias a la sensibilidad de la técnica ha sido posible distinguir diferentes tipos de crecimiento espeleotémico dentro de una estalactita localizada en las bóvedas interiores de la muralla histórica de la isla de Nueva Tabarca.
Resumo:
Skyrmions are topologically protected spin textures, characterized by a topological winding number N, that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimensional skyrmion lattice withN = ±1 drives graphene into a quantum anomalous Hall phase, with a band gap in bulk, a Chern number C = 2N, and chiral edge states with perfect quantization of conductance G = 2N e2 h . Our findings imply that the topological properties of the skyrmion lattice can be imprinted in the Dirac electrons of graphene.
Resumo:
We study the spin waves of the triangular skyrmion crystal that emerges in a two-dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii–Moriya interactions, Zeeman coupling and uniaxial anisotropy. The calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.
Resumo:
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. By using a mean-field Hubbard model, we study the appearance of magnetic textures associated with removing a single atom (vacancy) and multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based on the Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin S of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance, there is a maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
Resumo:
This paper will introduce the reader to some of the “classical” and “new” families of ordered porous materials which have arisen throughout the past decades and/or years. From what is perhaps the best-known family of zeolites, which even now to this day is under constant research, to the exciting new family of hierarchical porous materials, the number of strategies, structures, porous textures, and potential applications grows with every passing day. We will attempt to put these new families into perspective from a synthetic and applied point of view in order to give the reader as broad a perspective as possible into these exciting materials.
Resumo:
A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.
Resumo:
Natural stone has been a popular and reliable building material throughout history appearing in many historic monuments and in more recent buildings. Research into the intrinsic properties of specific stones is important because it gives us a greater understanding of the factors that limit and act on them. This can help prevent serious problems from occurring in our buildings bringing both esthetic benefits and financial savings. To this end, the main objective of this research has been to study the influence of the fabric and the mineral composition of two types of sandstone on their durability. The first is a red continental sandstone from the Buntsandstein Age called “Molinaza Roja”, which is quarried in Montoro (Cordoba). The second is quarried in Ronda (Malaga) and is sold under the trade name of “Arenisca Ronda”. It is a light pink-whitish calcarenite deposited during the Late Tortonian to Late Messinian. We characterized their petrological and petrophysical properties by studying their rock fabrics, porous systems and mechanical properties. In order to obtain a complete vision of the behavior of their rock fabrics, we also carried out two decay tests, the salt crystallization and the freeze–thaw tests. We then measured the effects on the textures of the altered samples during and after the decay tests and we evaluated the changes in the porous system. By comparing the results between intact and altered samples, we found that Arenisca Ronda is less durable because it has a high quantity of expandable clays (smectites) and a high percentage of pores in the 0.1–1 μm range, in which the pressure produced by salt crystallization is strongest. In Molinaza Roja the decay agents caused significant sanding due to loss of cohesion between the clasts, especially during the salt crystallization test. In both stones, the anisotropies (oriented textures) have an important role in their hydric and dynamic behavior and also affect their mechanical properties (especially in the compression resistance). No changes in color were detected.