9 resultados para Semantic Web, Cineca,data warehouse, Università italiane

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los actuales sistemas de Reconocimiento de Entidades en el dominio farmacológico, necesarios como apoyo para el personal sanitario en el proceso de prescripción de un tratamiento farmacológico, sufren limitaciones relacionadas con la falta de cobertura de las bases de datos oficiales. Parece por tanto necesario analizar la fiabilidad de los recursos actuales existentes, tanto en la Web Semántica como en la Web 2.0, y determinar si es o no viable utilizar dichos recursos como fuentes de información complementarias que permitan generar y/o enriquecer lexicones empleados por sistemas de Reconocimiento de Entidades. Por ello, en este trabajo se analizan las principales fuentes de información relativas al dominio farmacológico disponibles en Internet. Este análisis permite concluir que existe información fiable y que dicha información permitiría enriquecer los lexicones existentes con sinónimos y otras variaciones léxicas o incluso con información histórica no recogida ni mantenida en las bases de datos oficiales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper introduces the Sm4RIA Extension for OIDE, which implements the Sm4RIA approach in OIDE (OOH4RIA Integrated Development Environment). The application, based on the Eclipse framework, supports the design of the Sm4RIA models as well as the model-to-model and model-to-text transformation processes that facilitate the generation of Semantic Rich Internet Applications, i.e., RIA applications capable of sharing data as Linked data and consuming external data from other sources in the same manner. Moreover, the application implements mechanisms for the creation of RIA interfaces from ontologies and the automatic generation of administration interfaces for a previously design application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly.