2 resultados para Selective culture medium

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to characterize organ culture of human neuroretina and to establish survival and early degeneration patterns of neural and glial cells. Sixteen neuroretina explants were prepared from 2 postmortem eyes of 2 individuals. Four explants were used as fresh retina controls, and 12 were evaluated at 3, 6, and 9 days of culture. Neuroretina explants (5 × 5 mm) were cultured in Transwell® dishes with the photoreceptor layer facing the supporting membrane. Culture medium (Neurobasal A-based) was maintained in contact with the membrane beneath the explant. Cryostat and ultrathin sections were prepared for immunohistochemistry and electron microscopy. Neuroretinal modifications were evaluated after toluidine blue staining and after immunostaining for neuronal and glial cell markers. Ultrastructural changes were analyzed by electron microscopy. From 0 to 9 days in culture, there was progressive retinal degeneration, including early pyknosis of photoreceptor nuclei, cellular vacuolization in the ganglion cell layer, decrease of both plexiform layer thicknesses, disruption and truncation of photoreceptor outer segments (OS), and marked reduction in the number of nuclei at both nuclear layers where the cells were less densely packed. At 3 days there was swelling of cone OS with impairment of pedicles, loss of axons and dendrites of horizontal and rod bipolar cells that stained for calbindin (CB) and protein kinase C (PKC-α), respectively. After 9 days, horizontal cells were pyknotic and without terminal tips. There were similar degenerative processes in the outer plexiform layer for rod bipolar cells and loss of axon terminal lateral varicosities in the inner plexiform layer. Glial fibrillary acidic protein (GFAP) staining did not reveal a dramatic increase of gliosis in Müller cells. However, some Müller cells were CB immunoreactive at 6 days of culture. Over 9 days of culture, human neuroretina explants underwent morphological changes in photoreceptors, particularly the OS and axon terminals, and in postsynaptic horizontal and bipolar cells. These early changes, not previously described in cultured human samples, reproduce some celullar modifications after retinal damage. Thus, this model may be suitable to evaluate therapeutic agents during retinal degeneration processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity,this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitriteconcentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 °C. The results showed theability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate wasdetected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The completeremoval of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mMnitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymeswere higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifyingrole of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove60 % of the nitrate and 75 % of the nitrite initially present in brine samples collected from a wastewater treatment facility.These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for thebioremediation of brines with high nitrite and nitrate concentrations.