10 resultados para Seismic interferometry
em Universidad de Alicante
Resumo:
This work presents a forensic analysis of buildings affected by mining subsidence, which is based on deformation data obtained by Differential Interferometry (DInSAR). The proposed test site is La Union village (Murcia, SE Spain) where subsidence was triggered in an industrial area due to the collapse of abandoned underground mining labours occurred in 1998. In the first part of this work the study area was introduced, describing the spatial and temporal evolution of ground subsidence, through the elaboration of a cracks map on the buildings located within the affected area. In the second part, the evolution of the most significant cracks found in the most damaged buildings was monitored using biaxial extensometric units and inclinometers. This article describes the work performed in the third part, where DInSAR processing of satellite radar data, available between 1998 and 2008, has permitted to determine the spatial and temporal evolution of the deformation of all the buildings of the study area in a period when no continuous in situ instrumental data is available. Additionally, the comparison of these results with the forensic data gathered in the 2005–2008 period, reveal that there is a coincidence between damaged buildings, buildings where extensometers register significant movements of cracks, and buildings deformation estimated from radar data. As a result, it has been demonstrated that the integration of DInSAR data into forensic analysis methodologies contributes to improve significantly the assessment of the damages of buildings affected by mining subsidence.
Resumo:
The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-seat town of Badong, located on the south shore between the Xiling and Wu gorges of the Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges Project, since the new Three Gorges reservoir completely submerged the location of the old city. The instability of the slope is affecting the new town by causing residential safety problems. The Huangtupo landslide provides scientists an opportunity to understand landslide response to fluctuating river water level and heavy rainfall episodes, which is essential to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar (InSAR) techniques provide a very useful tool for the study of superficial and spatially variable displacement phenomena. In this paper, three sets of radar data have been processed to investigate the Huangtupo landslide. Results show that maximum displacements are affecting the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot landslide) exhibit a stable behaviour in agreement with in situ data, although some active areas have been recognized in the foot of the Substation landslide and Garden Spot landslide. InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped recognize the different displacement patterns on the slope and their relationships with various triggering factors. For those persistent scatterers, which exhibit long-term displacements, they can be decomposed into a creep model (controlled by geological conditions) and a superimposed recoverable term (dependent on external factors), which appears closely correlated with reservoir water level changes close to the river's edge. These results, combined with in situ data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its management.
Resumo:
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.
Resumo:
Surface displacement at the dykes of La Pedrera reservoir (SE Spain) has been measured by satellite differential Synthetic Aperture Radar (SAR) interferometry. At the main dyke, a displacement of about 13 cm along the satellite line of sight has been estimated between August 1995 and May 2010, from a dataset composed by ERS-1, ERS-2 and Envisat-ASAR images. Two independent short-term processing tasks were also carried out with ERS-2/Envisat-ASAR (from June 2008 to May 2010) and TerraSAR-X (from August 2008 to June 2010) images which have shown similar spatial and temporal displacement patterns. The joint analysis of historical instrument surveys and DInSAR-derived data has allowed the identification of a long-term deformation process which is reflected at the dam's surface and is also clearly recognizable in the inspection gallery. The plausible causes of the displacements measured by DInSAR are also discussed in the paper. Finally, DInSAR data have been used to compute the long-term settlement of La Pedrera dam, showing a good agreement with external studies. Consequently, this work demonstrates the integration of DInSAR with in-situ techniques which helps provide a complete spatial vision of the displacements in the dam thereby helping to differentiate the causal mechanisms.
Resumo:
This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).
Resumo:
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time–frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time–frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results.
Resumo:
This study is in the frame of the cooperative line that several Spanish Universities and other foreign partners started with the Haitian government in 2010. According to our studies (Benito et al. in An evaluation of seismic hazard in La Hispaniola, after the 2010 Haiti earthquake, 33rd General Assembly of the European Seismological Commission, Moscow, Russia, 2012) and recent scientific literature, the earthquake hazard in Haiti remains high (Calais et al. in Nat Geosci 3:794–799, 2010). In view of this, we wonder whether the country is currently ready to face another earthquake. In this sense, we estimated several damage scenarios in Port-au-Prince and Cap-Haitien associated to realistic possible major earthquakes. Our findings show that almost 50 % of the building stock of both cities would result uninhabitable due to structural damage. Around 80 % of the buildings in both cities have reinforced concrete structure with concrete block infill; however, the presence of masonry buildings becomes significant (between 25 and 45 % of the reinforced concrete buildings) in rural areas and informal settlements on the outskirts, where the estimated damage is higher. The influence of the soil effect on the damage spatial distribution is evident in both cities. We have found that the percentage of uninhabitable buildings in soft soil areas may be double the percentage obtained in nearby districts located in hard soil. These results reveal that a new seismic catastrophe of similar or even greater consequences than the 2010 Haiti earthquake might happen if the earthquake resilience is not improved in the country. Nowadays, the design of prevention actions and mitigation policies is the best instrument the society has to face seismic risk. In this sense, the results of this research might contribute to define measures oriented to earthquake risk reduction in Haiti, which should be a real priority for national and international institutions.
Resumo:
The Santas Justa and Rufina Gothic church (fourteenth century) has suffered several physical, mechanical, chemical, and biochemical types of pathologies along its history: rock alveolization, efflorescence, biological activity, and capillary ascent of groundwater. However, during the last two decades, a new phenomenon has seriously affected the church: ground subsidence caused by aquifer overexploitation. Subsidence is a process that affects the whole Vega Baja of the Segura River basin and consists of gradual sinking in the ground surface caused by soil consolidation due to a pore pressure decrease. This phenomenon has been studied by differential synthetic aperture radar interferometry techniques, which illustrate settlements up to 100 mm for the 1993–2009 period for the whole Orihuela city. Although no differential synthetic aperture radar interferometry information is available for the church due to the loss of interferometric coherence, the spatial analysis of nearby deformation combined with fieldwork has advanced the current understanding on the mechanisms that affect the Santas Justa and Rufina church. These results show the potential interest and the limitations of using this remote sensing technique as a complementary tool for the forensic analysis of building structures.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.