5 resultados para Seismic analysis. Structures design to seismic effects. Structural engineering design
em Universidad de Alicante
Resumo:
This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).
Resumo:
Presentación oral SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
In recent years, several explanatory models have been developed which attempt to analyse the predictive worth of various factors in relation to academic achievement, as well as the direct and indirect effects that they produce. The aim of this study was to examine a structural model incorporating various cognitive and motivational variables which influence student achievement in the two basic core skills in the Spanish curriculum: Spanish Language and Mathematics. These variables included differential aptitudes, specific self-concept, goal orientations, effort and learning strategies. The sample comprised 341 Spanish students in their first year of Compulsory Secondary Education. Various tests and questionnaires were used to assess each student, and Structural Equation Modelling (SEM) was employed to study the relationships in the initial model. The proposed model obtained a satisfactory fit for the two subjects studied, and all the relationships hypothesised were significant. The variable with the most explanatory power regarding academic achievement was mathematical and verbal aptitude. Also notable was the direct influence of specific self-concept on achievement, goal-orientation and effort, as was the mediatory effect that effort and learning strategies had between academic goals and final achievement.
Resumo:
This paper describes the “Variation Guggenheim 3: Mirador de la palmera” project, situated in Daya Vieja (Alicante-Spain). This structure is inspired by the Guggenheim museum of New York and is designed to protect a land-mark palm-tree from wind loads. This six – trunk palm tree was declared monument by the Valencian government in 2012. The structure that now protect it appears to fly around de palm tree creating a helicoidally skywalk made of steel, while retrofitting the lateral trunks of the tree to protect them from collapse. An 18 m. long straight beam starts on the top of this helix, and stretches towards a lookout point that offers a view of the whole village and its surroundings. The reduction of the visual impact of the structure on the tree was a major aim for the project design. The structural elements are as slender as possible to avoid the visual obstruction of tree. They are painted white, while the walkway steel corrugated plate is painted green in order to highlight its neat shape among the blur created by the apparent mess of bars of the supporting structure. The two main piles of this pedestrian bridge were designed in steel and geometrically resemble trees. A Ground Penetrating Radar analysis was performed to detect the palm root location and to decide the best foundation system. Slender cast in-situ steel-concrete micropiles along with a concrete pile-cap, raised some centimeters above the ground level, were used to reduce the damage to the roots. The projected pile-cap is a slender, continuous, circular ring; which geometry resembles a concrete bench. This structure has been a finalist in the Architecture Awards for the 2010-2014 best construction projects, held by the Diputación de Alicante.
Resumo:
Past and recent observations have shown that the local site conditions significantly affect the behavior of seismic waves and its potential to cause destructive earthquakes. Thus, seismic microzonation studies have become crucial for seismic hazard assessment, providing local soil characteristics that can help to evaluate the possible seismic effects. Among the different methods used for estimating the soil characteristics, the ones based on ambient noise measurements, such as the H/V technique, become a cheap, non-invasive and successful way for evaluating the soil properties along a studied area. In this work, ambient noise measurements were taken at 240 sites around the Doon Valley, India, in order to characterize the sediment deposits. First, the H/V analysis has been carried out to estimate the resonant frequencies along the valley. Subsequently, some of this H/V results have been inverted, using the neighborhood algorithm and the available geotechnical information, in order to provide an estimation of the S-wave velocity profiles at the studied sites. Using all these information, we have characterized the sedimentary deposits in different areas of the Doon Valley, providing the resonant frequency, the soil thickness, the mean S-wave velocity of the sediments, and the mean S-wave velocity in the uppermost 30 m.