2 resultados para Seasonal anestrus
em Universidad de Alicante
Resumo:
The aim of the present study is to identify and evaluate the relationship between Woodpigeon (Columba palumbus, Linnaeus, 1758) density and different environmental gradients (thermotype, ombrotype, continentality and latitudinal), land use and landscape structure, using geographic information systems and multivariate modelling. Transects (n = 396) were developed to estimate the density of Woodpigeon in the Marina Baja (Alicante, Spain) from 2006 to 2008. The highestdensity for Woodpigeon was in September-October (1.28birds/10ha) and the lowest inFebruary-March (0.34birds/10ha). Moreover, there were more Woodpigeons in areas with a mesomediterranean thermotypethan in thermomediterranean or supramediterranean ones. There was greater densityinthe intermediate zones compared to thecoast and interior. The natural or cultural landscape had the highest Woodpigeon density (1.53birds/10ha), with both denseand clear pine forest values standing out. Therefore, it is very important to conserve these traditional landscapes with adequate management strategies in order to maintain, resident and transient Woodpigeon populations. These natural areas are open places where the Woodpigeons find food and detect the presence ofpredators. Thus, this study will enable more precise knowledge of the ecological factors (habitat variables) that intervene in the distribution of Woodpigeon populations and their density.
Resumo:
Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.