3 resultados para Science, Technology, Engineering and Math fields (STEM)
em Universidad de Alicante
Resumo:
Teaching architecture is experiencing a moment of opportunity. New methods, like constructivist pedagogy, based on complexity and integration are yet to be explored. In this context of opportunity teaching architecture has a duty to integrate complexity in their curriculum. Teaching methods should also assume inherent indeterminacy and contingency of all complex process. If we accept this condition as part of any teaching method, the notion of truth or falsehood it becomes irrelevant. In this regard it could focus on teaching to contingency of language. Traditionally, technology is defined as the language of science. If we assume contingency as one of the characteristics of language, we could say that technology is also contingent. Therefore we could focus technology teaching to redefine its own vocabulary. So, redefining technological vocabulary could be an area of opportunity for education in architecture. The student could redefine their own tools, technology, to later innovate with them. First redefine the vocabulary, the technology, and then construct the new language, the technique. In the case of Building Technology subjects, it should also incorporate a more holistic approach for enhancing interdisciplinary transfer. Technical transfer, either from nature or other technologies to the field of architecture, is considered as a field of great educational possibilities. Evenmore, student get much broader technical approach that transgresses the boundaries of architectural discipline.
Resumo:
We develop a dynamic general-equilibrium framework in which growth is driven by skill-biased technology diffusion. The model incorporates leisure–labor decisions and human capital accumulation through education. We are able to reproduce the trends in income inequality and labor and skills supplies observed in the United States between 1969 and 1996. The paper also provides an explanation for why more individuals invest in human capital when the investment premium is going down, and why the skill-premium goes up when the skills supply is increasing.
Resumo:
Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.