3 resultados para Scale approximately 1:15,400None

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pre-pilot scale synthesis of 1-phenylethanol was carried out by the cathodic hydrogenation of acetophenone in a 100 cm2 (geometric area) Polymer Electrolyte Membrane Electrochemical Reactor. The cathode was a Pd/C electrode. Hydrogen oxidation on a gas diffusion electrode was chosen as anodic reaction in order to take advantage of the hydrogen evolved during the reduction. This hydrogen oxidation provides the protons needed for the synthesis. The synthesis performed with only a solid polymer electrolyte, spe, has lower fractional conversion although a higher selectivity than that carried out using a support–electrolyte–solvent together with a spe. However, the difference between these two cases is rather small and since the work-up and purification of the final product are much easier when only a spe is used, this last process was chosen for the pre-pilot electrochemical synthesis of 1-phenylethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on a Messinian shallow-marine terrigenous unit, termed the La Virgen Formation, which forms part of the sedimentary infill of the Bajo Segura Basin (Betic margin of the western Mediterranean). This formation was deposited during a high sea level phase prior to the onset of the Messinian Salinity Crisis. Stratigraphically, it comprises a prograding stack of sandstone lithosomes alternating with marly intervals (1st-order cyclicity). These lithosomes are characterized by a homoclinal geometry that tapers distally, and interfinger with pelagic sediments rich in planktonic and benthic microfauna (Torremendo Formation). An analysis of sedimentary facies of each lithosome reveals a repetitive succession of sandy storm beds (tempestites), occasionally amalgamated, which are separated by thin marly layers (2nd-order cyclicity). Each storm bed contains internal erosional surfaces (3rd-order cyclicity) that delimit sets of laminae. Two categories of storm beds have been differentiated. The first one includes layers formed below storm wave base (SWB), characterized by traction structures associated to unidirectional flows (scoured base, planar lamination, and parting lineation). The second category consists of layers deposited above the SWB which display typical high regime oscillatory flow structures (swaley and hummocky cross lamination). In both cases, the ichnological record is characterized by an oligotypic association of Ophiomorpha nodosa, which can be interpreted as the result of allochthonous tracemakers (crustaceans) transported during storm events together with the sediment. The benthic microfauna in the marly intervals that separate the sandstone lithosomes (1st-order cyclicity) indicates that the storm ebb surges were deposited at depths ranging from those of inner shelf settings (with Elphidium spp. and Cibicides lobatulus) to those of outer shelf (with Valvulineria complanata and Uvigerina cylindrica). At the distal end of the sandstone lithosomes, the planktonic microfauna is characterized by a high content of taxa indicative of warm-oligotrophic waters (Globigerinoides obliquus and Globigerinoides bulloideus). In contrast, in the marly intervals, the microfauna is dominated by species typical of cold-eutrophic waters (Globigerina and Neogloboquadrina). This alternation of planktic foraminiferal assemblages is interpreted as being the expression of climatic cycles, in which every episode of progradation of tempestite-dominated lithosomes corresponds to maximum insolation and warm waters, whereas episodes of marly deposition correspond to minimal insolation and cold waters. The 1st-order cyclicity recorded in the La Virgen Formation, in a context of terrigenous storm-dominated shelf, corresponds to sapropel/homogeneous marl cycles formed in a pelagic basin (Torremendo Fm). These cycles in pelagic sediments are commonplace throughout the Mediterranean during the Messinian and reflect precession orbital changes: repeated periods of maximum insolation – minimum precession (sapropels) and minimal insolation – maximum precession (homogeneous marls). The fact that the example of terrigenous unit studied herein is coetaneous with the well-developed reef complexes in the Mediterranean basins points out the importance of sediment supply in the formation of large-scale sandy lithosomes. This is a crucial aspect to understanding reservoir genesis as well as lateral stratigraphic relationships with potential seal and/or source rocks.