11 resultados para Saproxylic and phytophagous hoverflies

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data are provided on two hoverfly species new to the Iberian Peninsula, Brachyopa grunewaldensis Kassebeer and Criorhina floccosa (Meigen), and one new to Spain, Eumerus consimilis Šimić & Vujić. New habitat and breeding data are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The “dehesa” is a traditional Iberian agrosilvopastoral ecosystem characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity. We show the high diversity of saproxylic beetles and syrphids (Diptera) in this ecosystem, including red-listed species. We analyzed whether saproxylic species distribution in the “dehesa” was affected by tree density per hectare, dominant tree species or vegetation coverage. Species diversity did not correlate with tree density; however, it was affected by tree species and shrub coverage but in a different way for each taxon. The highest beetle diversity was linked to Quercus pyrenaica, the most managed tree species, with eight indicator species. In contrast, Q. rotundifolia hosted more species of saproxylic syrphids. Regarding vegetation coverage, shrub coverage was the only variable that affected insect richness, again in a different way for both taxa. In contrast, beetle species composition was only affected by dominant tree species whereas syrphid species composition was not affected by tree species or shrub coverage. We concluded that the high diversity of saproxylic insects in the “dehesa” is related to its long history of agrosilvopastoral management, which has generated landscape heterogeneity and preserved old mature trees. However, the richness and composition of different taxa of insects respond in different ways to tree species and vegetation coverage. Consequently, conservation strategies should try to maintain traditional management, and different saproxylic taxa should be used to monitor the effect of management on saproxylic diversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tree hollows offer an ideal niche for saproxylic insects in mature Mediterranean forests, where Diptera and Coleoptera are the richest groups. Co-occurrence is frequently observed among many species of both groups in these microhabitats, and some of these species have been considered to facilitate the presence of other species by acting as ecosystem engineers. One of the systems that is found in Mediterranean tree hollows is formed by cetonid (Coleoptera: Cetoniidae) and syrphid (Diptera: Syrphidae) larvae. Here, cetonid larvae feed on wood and litter and produce a substrate that is easier to decompose. To assess the possible role of these larvae as facilitating agents for the saproxylic guild, we studied whether the presence of saprophagous Syrphidae inside tree hollows is associated with the activity of cetonid larvae. Furthermore, in laboratory conditions, we tested whether cetonid larvae activity can improve the development and fitness of the saprophagous syrphid species. Our results show that “cetonid activity” was the variable that best explained the presence of saprophagous syrphid species in natural conditions. Myathropa florea (L., 1758) was one of the species most influenced by this activity. The laboratory experiment gave similar results, demonstrating that an enriched substrate with Cetonia aurataeformis Curti, 1913 larval feces improves syrphid larval growth rate and fitness of adults (measured as longer wing length) of M. florea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saproxylic beetle diversity is high at the Cabañeros National Park (central Spain), where woodland habitats exhibit remarkable heterogeneity. Our aim was to explain the diversity of saproxylic beetles, focusing on species turnover among mature woodland types. We surveyed five woodland types that represented the heterogeneity of the park’s woodland habitats. Beetles were collected using window traps over a period of 20 months. The Jaccard Similarity Index was used as indirect value of beta diversity among woodlands and to test the relation between species turnover and geographical distance. We also identified the contribution of species turnover to landscape diversity by using a partitioning model. Moreover, the presence of mixed woodlands (more than one tree species) allowed us to attempt to valorise the effect of tree species (coupled with their historical management) on species turnover among woodlands. Finally, we looked for different saproxylic beetle preferences for habitat and tree species using an indicator value method. We found that saproxylic beetle species composition varied significantly among the studied woodlands. The variation in species turnover was independent from the distance among woodlands, which suggested that beetle dispersal abilities could not explain this high turnover. Tree species within woodlands were a key factor that increased diversity turnover in woodlands and, consequently, the diversity of the park. Moreover, we found saproxylic beetle species that had different habitat and tree species preferences. We conclude that woodland heterogeneity (highly affected by woodland composition) seems to be the driving force for saproxylic beetle diversity in this protected area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The choice of sampling methods to survey saproxylic beetles is a key aspect to assessing conservation strategies for one of the most endangered assemblages in Europe. We evaluated the efficiency of three sampling methods: baited tube traps (TT), window traps in front of a hollow opening (WT), and emergence traps covering tree hollows (ET) to study richness and diversity of saproxylic beetle assemblages at species and family levels in Mediterranean woodlands. We also examined trap efficiency to report ecological diversity, and changes in the relative richness and abundance of species forming trophic guilds: xylophagous, saprophagous/saproxylophagous, xylomycetophagous, predators and commensals. WT and ET were similarly effective in reporting species richness and diversity at species and family levels, and provided an accurate profile of both the flying active and hollow-linked saproxylic beetle assemblages. WT and ET were the most complementary methods, together reporting more than 90 % of richness and diversity at both species and family levels. Diversity, richness and abundance of guilds were better characterized by ET, which indicates higher efficiency in outlining the ecological community of saproxylics that inhabit tree hollows. TT were the least effective method at both taxonomic levels, sampling a biased portion of the beetle assemblage attracted to trapping principles, however they could be used as a specific method for families such as Bostrichiidae, Biphyllidae, Melyridae, Mycetophagidae or Curculionidae Scolytinae species. Finally, ET and WT combination allows a better characterization of saproxylic assemblages in Mediterranean woodland, by recording species with different biology and linked to different microhabitat types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saproxylic diversity assessment is a major goal for conservation strategies in woodlands and it should consider woodland composition and configuration at site and tree level as key modelling factors. However, in Mediterranean woodlands little is known about the relation with the environmental factors that structure their assemblages, especially those linked to tree hollow microhabitats. We assessed the diversity of Syrphidae (Diptera) and Coleoptera saproxylic guilds that co-occurred in tree hollows located in three different Iberian Mediterranean woodlands in the Cabañeros National Park (Spain). Furthermore, we evaluated how differences in tree hollow microenvironmental variables (understood as the physical and biotic characteristics of a hollow and tree individual) influenced saproxylic guild diversity both within and among woodland sites. We found that woodland sites that provided greater heterogeneity of trees and hollow microhabitats determined higher saproxylic guild diversity. Nevertheless, certain species or even complete guilds can be favoured in woodlands where some hollow microhabitats predominate as a consequence of historical tree management. In general, hollow volume was the main determining factor for saproxylic guild richness and abundance in woodland sites, and large hollow volume was usually related to higher diversity, which highlighted the importance of multi-habitat hollow trees. Moreover, saproxylic guilds also responded to other different microenvironmental variables, which indicated different ecological preferences among guilds. The conservation of saproxylic insects in Iberian Mediterranean areas must be addressed to protect woodland sites that provide high diversity and large numbers of tree hollow microhabitats, and practices to enhance microhabitat heterogeneity should even be encouraged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree hollows are keystone structures for saproxylic fauna and host numerous endangered species. However, not all tree hollows are equal. Many variables including physical, biotic and chemical ones, can characterise a tree hollow, however, the information that these could provide about the saproxylic diversity they harbour has been poorly explored. We studied the beetle assemblages of 111 Quercus species tree hollows in four protected areas of the Iberian Peninsula. Three physical variables related to tree hollow structure, and two biotic ones (presence of Cetoniidae and Cerambyx species recognised as ecosystem engineers) were measured in each hollow to explore their relative effect on beetle assemblages. Moreover, we analysed the chemical composition of the wood mould in 34 of the hollows, in order to relate beetle diversity with hollow quality. All the environmental variables analysed (physical and biological) showed a significant influence on saproxylic beetle assemblages that varied depending on the species. Furthermore, the presence of ecosystem engineers affected both physical and chemical features. Although wood mould volume, and both biotic variables could act as beetle diversity surrogate, we enhance the presence of Cetoniidae and Cerambyx activity (both easily observable in the field) as indicator variables, even more if both co-occur as each affect to different assemblages. Finally, assimilable carbon and phosphorous contents could act as indicator for past and present beetle activity inside the cavity that could become a useful tool in functional diversity studies. However, an extension of this work to other taxonomic groups would be desirable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management.