4 resultados para STELLAR EVOLUTION

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars – frequency, mass ratio & orbital separation – are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only ~5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (>6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (~1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (<1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss – likely via case A mass transfer or a contact configuration – or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims. In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods. To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results. Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993−2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano’s star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions. The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log  g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log  g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50−100 K for Teff, 0.10−0.25 dex for log  g and 0.05−0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.