5 resultados para SPIRAL GALAXIES
em Universidad de Alicante
Resumo:
The methodology “b-learning” is a new teaching scenario and it requires the creation, adaptation and application of new learning tools searching the assimilation of new collaborative competences. In this context, it is well known the knowledge spirals, the situational leadership and the informal learning. The knowledge spirals is a basic concept of the knowledge procedure and they are based on that the knowledge increases when a cycle of 4 phases is repeated successively.1) The knowledge is created (for instance, to have an idea); 2) The knowledge is decoded into a format to be easily transmitted; 3) The knowledge is modified to be easily comprehensive and it is used; 4) New knowledge is created. This new knowledge improves the previous one (step 1). Each cycle shows a step of a spiral staircase: by going up the staircase, more knowledge is created. On the other hand, the situational leadership is based on that each person has a maturity degree to develop a specific task and this maturity increases with the experience. Therefore, the teacher (leader) has to adapt the teaching style to the student (subordinate) requirements and in this way, the professional and personal development of the student will increase quickly by improving the results and satisfaction. This educational strategy, finally combined with the informal learning, and in particular the zone of proximal development, and using a learning content management system own in our University, gets a successful and well-evaluated learning activity in Master subjects focused on the collaborative activity of preparation and oral exhibition of short and specific topics affine to these subjects. Therefore, the teacher has a relevant and consultant role of the selected topic and his function is to guide and supervise the work, incorporating many times the previous works done in other courses, as a research tutor or more experienced student. Then, in this work, we show the academic results, grade of interactivity developed in these collaborative tasks, statistics and the satisfaction grade shown by our post-graduate students.
Resumo:
Context. The discovery of several clusters of red supergiants towards l = 24°−30° has triggered interest in this area of the Galactic plane, where lines of sight are very complex and previous explorations of the stellar content were very preliminary. Aims. We attempt to characterise the stellar population associated with the H ii region RCW 173 (=Sh2-60), located at, as previous studies have suggested that this population could be beyond the Sagittarius arm. Methods. We obtained UBV photometry of a stellar field to the south of the brightest part of RCW 173, as well as spectroscopy of about twenty stars in the area. We combined our new data with archival 2MASS near-infrared photometry and Spitzer/GLIMPSE imaging and photometry, to achieve a more accurate characterisation of the stellar sources and the associated cloud. Results. We find a significant population of early-type stars located at d = 3.0 kpc, in good agreement with the “near” dynamical distance to the H ii region. This population should be located at the near intersection of the Scutum-Crux arm. A luminous O7 II star is likely to be the main source of ionisation. Many stars are concentrated around the bright nebulosity, where GLIMPSE images in the mid infrared show the presence of a bubble of excited material surrounding a cavity that coincides spatially with a number of B0-1 V stars. We interpret this as an emerging cluster, perhaps triggered by the nearby O7 II star. We also find a number of B-type giants. Some of them are located at approximately the same distance, and may be part of an older population in the same area, characterised by much lower reddening. A few have shorter distance moduli and are likely to be located in the Sagittarius arm. Conclusions. The line of sight in this direction is very complex. Optically visible tracers delineate two spiral arms, but seem to be absent beyond d ≈ 3 kpc. Several H ii regions in this area suggest that the Scutum-Crux arm contains thick clouds actively forming stars. All these populations are projected on top of the major stellar complex signposted by the clusters of red supergiants.
Resumo:
We report near-infrared radial velocity (RV) measurements of the recently identified donor star in the high mass X-ray binary (HMXB) system OAO 1657−415 obtained in the H band using ISAAC on the Very Large Telescope. Cross-correlation methods were employed to construct a RV curve with a semi-amplitude of 22.1 ± 3.5 km s−1. Combined with other measured parameters of this system it provides a dynamically determined neutron star (NS) mass of 1.42 ± 0.26 M⊙ and a mass of 14.3 ± 0.8 M⊙ for the Ofpe/WN9 highly evolved donor star. OAO 1657−415 is an eclipsing HMXB pulsar with the largest eccentricity and orbital period of any within its class. Of the 10 known eclipsing X-ray binary pulsars OAO 1657−415 becomes the ninth with a dynamically determined NS mass solution and only the second in an eccentric system. Furthermore, the donor star in OAO 1657−415 is much more highly evolved than the majority of the supergiant donors in other HMXBs, joining a small but growing list of HMXBs donors with extensive hydrogen depleted atmospheres. Considering the evolutionary development of OAO 1657−415, we have estimated the binding energy of the envelope of the mass donor and find that there is insufficient energy for the removal of the donor’s envelope via spiral-in, ruling out a common envelope evolutionary scenario. With its non-zero eccentricity and relatively large orbital period the identification of a definitive evolutionary pathway for OAO 1657−415 remains problematic, we conclude by proposing two scenarios which may account for OAO 1657−415 current orbital configuration.
Resumo:
The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.
Resumo:
We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary excitations are found by means of Bogoliubov transformation, as a function of the two variables that can be controlled experimentally, the applied magnetic field and the chain length. Three main results are found. First, because of the noncollinear nature of the classical ground state, there is a significant zero-point reduction of the ground-state magnetization of the spin spiral. Second, there is a critical external field from which the ground state changes from chiral spin ground state to collinear ferromagnetic order. The character of the two lowest-energy spin waves changes from edge modes to confined bulk modes over this critical field. Third, in the spin-spiral state, the spin-wave spectrum exhibits oscillatory behavior as function of the chain length with the same period of the spin helix.