12 resultados para SOx removal additives
em Universidad de Alicante
Resumo:
Póster presentado en 19th International Congress of Chemical and Process Engineering, Prague, Czech Republic August 28th-September 1st, 2010.
Resumo:
Comunicación presentada en forma de póster en el "12th Mediterranean Congress of Chemical Engineering", Barcelona (Spain), November 15-18, 2011.
Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions
Resumo:
The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.
Resumo:
A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.
Resumo:
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Resumo:
A parallel algorithm to remove impulsive noise in digital images using heterogeneous CPU/GPU computing is proposed. The parallel denoising algorithm is based on the peer group concept and uses an Euclidean metric. In order to identify the amount of pixels to be allocated in multi-core and GPUs, a performance analysis using large images is presented. A comparison of the parallel implementation in multi-core, GPUs and a combination of both is performed. Performance has been evaluated in terms of execution time and Megapixels/second. We present several optimization strategies especially effective for the multi-core environment, and demonstrate significant performance improvements. The main advantage of the proposed noise removal methodology is its computational speed, which enables efficient filtering of color images in real-time applications.
Resumo:
The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.
Resumo:
The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.
Resumo:
Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.
Resumo:
The reaction of various 1-pivaloyl-1H-tetrazoles with excess lithium and a catalytic amount of naphthalene (20 mol%) led, after treatment with methanol, to the corresponding free tetrazoles through reductive C–N bond cleavage. This methodology represents a reasonable alternative to other nonreductive protocols.
Resumo:
The adsorption of As(III) from aqueous solutions using naturally occurring and modified Algerian montmorillonites has been investigated as a function of contact time, pH, and temperature. Kinetic studies reveal that uptake of As(III) ions is rapid within the first 3 h, and it slows down thereafter. Equilibrium studies show that As(III) shows the highest affinity toward acidic montmorillonite even at very low concentration of arsenic. The kinetics of As(III) adsorption on all montmorillonites used is well described by a pseudo-second-order chemical reaction model, which indicates that the adsorption process of these species is likely to be chemisorption. Adsorption isotherms of As(III) fitted the Langmuir and Freundlich isotherm models well. The adsorption of As(III) is pH-dependent obtaining an optimal adsorption at pH 5. From the thermodynamic parameters, it is concluded that the process is exothermic, spontaneous, and favorable. The results suggest that M1, M2, and acidic-M2 could be used as low-cost and effective filtering materials for removal of arsenic from water.
Resumo:
The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.