5 resultados para SME
em Universidad de Alicante
Resumo:
The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10–28 mmHg) whereas the influence of corneal thickness was studied by inducing a uniform variation (300–600 microns). A Computer Fluid Dynamics (CFD) air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine the membrane and bending corneal behavior.
Resumo:
Biomechanics is often defined as ‘mechanics applied to biology’. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling.
Resumo:
Diurnal changes in corneal geometry, pachymetry, and intraocular pressure (IOP) in a healthy eye were recorded. The deformation response to an air puff was simulated using 3 levels of corneal stiffness. The response was dependent on IOP and pachymetry and not only on the biomechanical properties of the cornea. Similarly, the maximum variability due to the diurnal changes in pachymetry and IOP in the corneal displacement generated by the air puff was found to reach 5%. Therefore, diurnal changes in IOP and corneal thickness were able to induce some variability in the air puff–based corneal deformation response. This potential variability should be considered when the biomechanical properties of the cornea are analyzed with air-puff devices.
Resumo:
As BIM adoption continues, the goal of a totally collaborative model with multiple contributors is attainable. Many initiatives such as the 2016 UK government level 2 BIM deadline are putting pressure on the construction industry to speed up the changeover. Clients and collaborators have higher expectations of using digital 3D models to communicate design ideas and solve practical problems. Contractors and clients are benefitting from cost saving scheduling and clash detection offered by BIM. Effective collaboration on the project will also give speed and efficiency gains. Despite this, many businesses of varying sizes are still having problems. The cost of the software and the training provides an obvious barrier for micro-enterprises and could explain a delay in adoption. Many studies have looked at these problems faced by SME and micro-enterprises. Larger companies have different problems. The efforts made by government to encourage them are quite comprehensive, but is anything being done to help smaller sectors and keep the industry cohesive? This limited study examines several companies of varying size and varying project type: architectural design businesses, main contractor, structural engineer and building consultancy. The study examines the barriers to a truly collaborative BIM workflow facing different specialities on a larger project and a contrasting small/medium project. The findings will establish that different barriers for each sector are actually pushing further apart, thus potentially creating a BIM-only construction elite, leaving the small companies remaining on 2D based drawing.
Resumo:
The UK construction industry comprises a very high proportion of SMEs that is companies employing up to 250. A Department for Business, Innovation and Skills research paper, found that SMEs had a 71.2% share of work in the construction industry. Micro and small firms (i.e. those employing up to 50) had a share of 46.7% of work (Ive and Murray 2013). The Government has high ambitions for UK construction. Having been found by successive government commissioned studies to be inefficient and highly fragmented, ambitious targets have been set for the industry to achieve 33% reduction in costs and 50% faster delivery by 2025. As a significant construction client, the Government has mandated the use of Level 2 BIM from 2016 on publicly funded projects over £5 million. The adoption of BIM plays a key role in the 2025 vision but a lack of clarity persists in the industry over BIM and significant barriers are perceived to its implementation, particularly amongst SMEs. However, industry wide transformation will be challenging without serious consideration of the capabilities of this large majority. Many larger firms, having implemented Level 2 BIM are now working towards Level 3 BIM while many of the smaller firms in the industry have not even heard of BIM. It would seem that fears of a ‘two tier’ industry are perhaps being realised. This paper builds on an earlier one (Mellon & Kouider 2014) and investigates, through field work, the level of Level 2 BIM implementation amongst SMEs compared to a large organisation. Challenges and innovative solutions identified through collected data are fully discussed and compared. It is suggested that where the SME perceives barriers towards adoption of the technologies which underpin BIM, they may consider collaborative methods of working as an interim step in order to work towards realising the efficiencies and benefits that these methods can yield. While the barriers to adoption of BIM are significant, it is suggested that they are not insurmountable for the SME and some recommendations for possible solutions are made.