4 resultados para SI(111) SURFACES

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption of nitric oxide (NO) on a Pt (111) surface modified with irreversible adsorbed bismuth adatoms is reported. While the voltammetric results reveal a close interaction between the two co-adsorbed compounds. In-situ infrared spectroscopy and scanning tunnelling microscopy indicate the formation of segregated adlayers. Formation of compressed Bi adlayers with modified redox properties is proposed to reconcile both results. This agrees with the observation of Bi islands in the STM images when NO is coadsorbed, not observed in the absence of NO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to deepen the knowledge about the origin of the CO preoxidation process and the intrinsic catalytic activity of Pt superficial steps toward CO oxidation, a series of CO stripping experiments were performed on stepped Pt electrodes in acidic medium. For the occurrence of CO preoxidation, it was found that it arises (reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with COads; (3) in the presence of traces of CO in solution; (4) in the presence of surface steps. If any of these four conditions is not satisfied, the CO preoxidation pathway does not appear, even though the steps on the electrode surface are completely covered by CO. By controlling the removal of the CO adlayer (voltammetrically), we show that once the CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are released earlier than the (110) step sites. Moreover, if (110) steps are selectively decorated with CO, its oxidation occurs only at potentials ∼150 mV higher than the CO preoxidation peak. Our results systematically demonstrate that step sites are less active to oxidize CO than those ones responsible for the CO preoxidation process. Once the sites responsible for the CO preoxidation are made free, there is no apparent motion of the remaining adsorbed CO layer, suggesting that the activation of the surface controls the whole process, rather than the diffusion of COads toward hypothetically “most active sites”. Voltammetric and chronoamperometric experiments performed on partially covered CO adlayers suggest that adsorbed CO behave as a motionless species during its oxidation, in which the CO adlayer is removed piece by piece. By means of in situ FTIR experiments, the stretching frequency of CO selectively adsorbed on (110) step sites was examined. Band frequency results confirm that those molecules adsorbed on steps are fully coupled with the adsorbed CO on (111) terraces when the surface reaches full coverage.