2 resultados para SEGMENTS

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. Methods. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). Results. The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor–bipolar–horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. Conclusions. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case report reports the visual rehabilitation obtained with the fitting of a new design of full scleral contact lens (ICD 16.5 contact lens, Paragon Vision Sciences, distributed by Lenticon, Madrid, Spain) in a cornea with advanced keratoconus and previous implantation of intracorneal ring segment with a very limited effect. This eye had a refraction of –3.00 × 55° cylinder, providing a visual acuity of 0.5 LogMAR. The topographic pattern was very irregular with the presence of a significant central protrusion and a significant central corneal thinning. Some previous unsuccessful fittings have been performed with corneal and corneal-scleral lenses. A comfortable wearing was achieved with a fully scleral contact lens of 4600 μm of sagittal height, optical power of –11.25 D, and providing an apical clearance of 196 μm. A visual acuity of 0.0 LogMAR combined with a relevant aberrometric improvement was achieved with this contact lens. The patient was completely satisfied with the fitting. The result was maintained during 1 year after the fitting. Full scleral lenses are then able to provide comfortable wear and a significant increase in visual acuity combined with a significant improvement in the visual quality in eyes with advanced keratoconus.