6 resultados para SCALE STRUCTURE
em Universidad de Alicante
Resumo:
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Resumo:
Background: The “Mackey Childbirth Satisfaction Rating Scale” (MCSRS) is a complete non-validated scale which includes the most important factors associated with maternal satisfaction. Our primary purpose was to describe the internal structure of the scale and validate the reliability and validity of concept of its Spanish version MCSRS-E. Methods: The MCSRS was translated into Spanish, back-translated and adapted to the Spanish population. It was then administered following a pilot test with women who met the study participant requirements. The scale structure was obtained by performing an exploratory factorial analysis using a sample of 304 women. The structures obtained were tested by conducting a confirmatory factorial analysis using a sample of 159 women. To test the validity of concept, the structure factors were correlated with expectations prior to childbirth experiences. McDonald’s omegas were calculated for each model to establish the reliability of each factor. The study was carried out at four University Hospitals; Alicante, Elche, Torrevieja and Vinalopo Salud of Elche. The inclusion criteria were women aged 18–45 years old who had just delivered a singleton live baby at 38–42 weeks through vaginal delivery. Women who had difficulty speaking and understanding Spanish were excluded. Results: The process generated 5 different possible internal structures in a nested model more consistent with the theory than other internal structures of the MCSRS applied hitherto. All of them had good levels of validation and reliability. Conclusions: This nested model to explain internal structure of MCSRS-E can accommodate different clinical practice scenarios better than the other structures applied to date, and it is a flexible tool which can be used to identify the aspects that should be changed to improve maternal satisfaction and hence maternal health.
Resumo:
The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.
Resumo:
Background: Only a minority of infants are exclusively breastfed for the recommended 6 months postpartum. Breast-feeding self-efficacy is a mother's confidence in her ability to breastfeed and is predictive of breastfeeding behaviors. The Prenatal Breast-feeding Self-efficacy Scale (PBSES) was developed among English-speaking mothers to measure breastfeeding self-efficacy before delivery. Objectives: To translate the PBSES into Spanish and assess its psychometric properties. Design: Reliability and validity assessment. Setting: A public hospital in Yecla, Spain. Participants: A convenience sample of 234 pregnant women in their third trimester of pregnancy. Methods: The PBSES was translated into Spanish using forward and back translation. A battery of self-administered questionnaires was completed by participants, including a questionnaire on sociodemographic variables, breastfeeding experience and intention, as well as the Spanish version of the PBSES. Also, data on exclusive breastfeeding at discharge were collected from hospital database. Dimensional structure, internal consistency and construct validity of the Spanish version of PBSES were assessed. Results: Confirmatory factor analysis suggested the presence of one construct, self-efficacy, with four dimensions or latent variables. Cronbach's alpha coefficient for internal consistency was 0.91. Response patterns based on decision to breastfeed during pregnancy provided evidence of construct validity. In addition, the scores of the Spanish version of the PBSES significantly predicted exclusive breastfeeding at discharge. Conclusions: The Spanish version of PBSES shows evidences of reliability, and contrasting group and predictive validity. Confirmatory factor analysis indicated marginal fit and further studies are needed to provide new evidence on the structure of the scale. The Spanish version of the PBSES can be considered a reliable measure and shows validity evidences.
Resumo:
Background: The Clinical Learning Environment, Supervision and Nurse Teacher scale is a reliable and valid instrument to evaluate the quality of the clinical learning process in international nursing education contexts. Objectives: This paper reports the development and psychometric testing of the Spanish version of the Clinical Learning Environment, Supervision and Nurse Teacher scale. Design: Cross-sectional validation study of the scale. Setting: 10 public and private hospitals in the Alicante area, and the Faculty of Health Sciences (University of Alicante, Spain). Participants: 370 student nurses on clinical placement (January 2011–March 2012). Methods: The Clinical Learning Environment, Supervision and Nurse Teacher scale was translated using the modified direct translation method. Statistical analyses were performed using PASW Statistics 18 and AMOS 18.0.0 software. A multivariate analysis was conducted in order to assess construct validity. Cronbach’s alpha coefficient was used to evaluate instrument reliability. Results: An exploratory factorial analysis identified the five dimensions from the original version, and explained 66.4% of the variance. Confirmatory factor analysis supported the factor structure of the Spanish version of the instrument. Cronbach’s alpha coefficient for the scale was .95, ranging from .80 to .97 for the subscales. Conclusion: This version of the Clinical Learning Environment, Supervision and Nurse Teacher scale instrument showed acceptable psychometric properties for use as an assessment scale in Spanish-speaking countries.
Resumo:
Vela X–1 is the prototype of the class of wind-fed accreting pulsars in high-mass X-ray binaries hosting a supergiant donor. We have analysed in a systematic way 10 years of INTEGRAL data of Vela X–1 (22–50 keV) and we found that when outside the X-ray eclipse, the source undergoes several luminosity drops where the hard X-rays luminosity goes below ∼3 × 1035 erg s−1, becoming undetected by INTEGRAL. These drops in the X-ray flux are usually referred to as ‘off-states’ in the literature. We have investigated the distribution of these off-states along the Vela X–1 ∼ 8.9 d orbit, finding that their orbital occurrence displays an asymmetric distribution, with a higher probability to observe an off-state near the pre-eclipse than during the post-eclipse. This asymmetry can be explained by scattering of hard X-rays in a region of ionized wind, able to reduce the source hard X-ray brightness preferentially near eclipse ingress. We associate this ionized large-scale wind structure with the photoionization wake produced by the interaction of the supergiant wind with the X-ray emission from the neutron star. We emphasize that this observational result could be obtained thanks to the accumulation of a decade of INTEGRAL data, with observations covering the whole orbit several times, allowing us to detect an asymmetric pattern in the orbital distribution of off-states in Vela X–1.