6 resultados para Root surface area

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured TiO2 photocatalysts with small crystalline sizes have been synthesized by sol-gel using the amphiphilic triblock copolymer Pluronic P123 as template. A new synthesis route, based on the treatment of TiO2 xerogels with acid-ethanol mixtures in two different steps, synthesis and extraction-crystallization, has been investigated, analyzing two acids, hydrochloric and hydriodic acid. As reference, samples have also been prepared by extraction-crystallization in ethanol, being these TiO2 materials amorphous and presenting higher porosities. The prepared materials present different degrees of crystallinity depending on the experimental conditions used. In general, these materials exhibit high surface areas, with an important contribution of microporosity and mesoporosity, and with very small size anatase crystals, ranging from 5 to 7 nm. The activity of the obtained photocatalysts has been assessed in the oxidation of propene in gas phase at low concentration (100 ppmv) under a UVA lamp with 365 nm wavelength. In the conditions studied, these photocatalysts show different activities in the oxidation of propene which do not depend on their surface areas, but on their crystallinity and band gap energies, being sample prepared with HCl both during synthesis and in extraction-crystallizations steps, the most active one, with superior performance than Evonik P25.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes the electrochemical characterization of N-doped carbon xerogels in the form of microspheres and of carbon aerogels with varied porosities and surface oxygen complexes. The interfacial capacitance of N-doped carbon xerogels decreased with increased micropore surface area as determined by N2 adsorption at −196 °C. The interfacial capacitance showed a good correlation with the areal NXPS concentration, and the best correlation with the areal concentration of pyrrolic or pyridonic nitrogen functionalities. The gravimetric capacitance decreased with greater xerogel microsphere diameter. The interfacial capacitance of carbon aerogels increased with higher percentage of porosity as determined from particle and true densities. The interfacial capacitance showed a linear relationship with the areal oxygen concentration and with the areal concentrations of CO- and CO2-evolving groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One option to optimize carbon materials for supercapacitor applications is the generation of surface functional groups that contribute to the pseudocapacitance without losing the designed physical properties. This requires suitable functionalization techniques able to selectively introduce a given amount of electroactive oxygen groups. In this work, the influence of the chemical and electrochemical oxidation methods, on the chemical and physical properties of a zeolite templated carbon (ZTC), as a model carbon material, have been studied and compared. Although both oxidation methods generally produce a loss of the original ZTC physical properties with increasing amount of oxidation, the electrochemical method shows much better controllability and, unlike chemical treatments, enables the generation of a large number of oxygen groups (O = 11000- 3300 μmol/g), with a higher proportion of active functionalities, while retaining a high surface area (ranging between 1900-3500 m2/g), a high microporosity and an ordered 3-D structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.