3 resultados para Robustness

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EmotiBlog is a corpus labelled with the homonymous annotation schema designed for detecting subjectivity in the new textual genres. Preliminary research demonstrated its relevance as a Machine Learning resource to detect opinionated data. In this paper we compare EmotiBlog with the JRC corpus in order to check the EmotiBlog robustness of annotation. For this research we concentrate on its coarse-grained labels. We carry out a deep ML experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC demonstrating the EmotiBlog validity as a resource for the SA task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.