3 resultados para Rh complex

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Rh diamine complex [Rh(COD)NH2(CH2)2NH(CH2)3Si(OCH3)3] BF4 was heterogenized by covalent bonding on two carbon xerogels and on carbon nanofibers, with the objective of preparing hydrogenation hybrid catalysts. Gas adsorption, SEM, TEM, DTP, ICP-OES and XPS were used for characterization. The results indicate that the active molecule is mainly located in supermicropores and produces microporosity blockage. The hybrid catalysts are more active than the homogeneous complex, but the Rh complex is partially reduced upon reaction. This modification is related to the nature of the support, which also shows effects in the stabilization against sintering of the Rh particles formed. The support porosity is a key factor in the selectivity differences between the catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A CNF-monolith sample (carbon nanofibres grown on a ceramic monolith), and a granular carbon xerogel have been used as supports for hybrid catalysts where the active species is an Rh diamine complex. The advantages of these supports are their open porous structure and their morphology, which make catalyst handling easier and avoid difficult separation processes. The obtained catalysts are noticeably more active than the homogeneous Rh complex and are stable against leaching. At first use, partial reduction of the Rh complex takes place and nanometer-sized Rh particles develop, which increases the catalyst activity. Despite the open porous structure, mass transport limitations are present, especially in the case of the carbon xerogel based catalyst. Differences in internal mass transfer limitations are essentially due to the different diffusional path lengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Rh phosphine complex, derived from the Wilkinson’s catalyst, has been immobilized by ion-exchange on the ammonium form of a Al-MCM-41 sample. Ammonium ions have been exchanged by cholamine ions, which act as an amine ligand, and then the Wilkinson’s catalyst has been immobilized by substitution of a phosphine ligand by the anchored amine. This is a novel immobilization procedure, as a ligand, instead of the whole complex, is tethered to the support by ion exchange. The obtained hybrid catalyst has been characterized by Elemental Analysis, DRIFTS and XPS. The quantitative exchange of ammonium by cholamine and coordination of Rh to amines has been observed. Most of the anchored Rh is considered to be coordinated to the ligand tethered to the support and a small proportion seems to be interacting with the protonated ligand or with the support surface. The catalyst has been tested in the hydrogenation of cyclohexene and in the hydroformylation of 1-octene. In the first case the catalyst is active and reusable, while a strong Rh leaching takes place in the second one.