2 resultados para Restricted Basin
em Universidad de Alicante
Resumo:
In order to evaluate taxonomic and environmental control on the preservation pattern of brachiopod accumulations, sedimentologic and taphonomic data have been integrated with those inferred from the structure of brachiopod accumulations from the easternmost Lower Jurassic Subbetic deposits in Spain. Two brachiopod communities (Praesphaeroidothyris and Securina communities) were distinguished showing a mainly free-lying way of life in soft-bottom habitats. Three taphofacies are discriminated based on proportion of disarticulation, fragmentation, packing, and shell filling. Taphofacies 1 is represented by thinly fragmented, dispersed brachiopod shells in wackestone beds. Taphofacies 2 is spatially restricted to small lenses where shells are poorly fragmented, rarely disarticulated, usually void filled, and highly packed. Taphofacies 3 is represented by mud or cement filled, loosely packed, articulated brachiopods forming large pocket-like structures. Temporal and spatial averaging were minimally involved in taphofacies 2 and 3. It is interpreted that patchy preservation implies preservation of primary original patchiness of brachiopod communities on the seafloor. The origin of shell-rich taphofacies (2 and 3) is related to rapid burial due to episodic storm activity, while shell-poor taphofacies 1 records background conditions. The nature and comparative diversity of these taphofacies underscores the importance of rapid burial for shell beds preservation. Differences in preservation between taphofacies 2 and 3 are mainly related to environmental criteria, most importantly storm energy and water depth. In contrast, the taxonomic-specific pattern of the communities is a subordinate element of control, controlling only minor within-taphofacies differences in preservation.
Resumo:
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages.