5 resultados para Respiration, Artificial [methods]
em Universidad de Alicante
Resumo:
Introduction: The nutritional registries are data bases through which we obtain the information to understand the nutrition of populations. Several main nutrition societies of the world have these types of registries, outstanding the NADYA (Home artificial and Ambulatory nutrition) group in Spain. The object of this study is to determine by means of a systematic review, the existent scientific production in the international data bases referred to nutritional support registries. Methods: Descriptive transversal study of the results of a critical bibliographic research done in the bioscience data bases: MEDLINE, EMBASE, The Cochrane Library, ISI (Web of Sciences), LILACS, CINHAL. Results: A total of 20 original articles related to nutritional registries were found and recovered. Eleven registries of eight countries were identified: Australia, Germany, Italy, Japan, Spain, Sweden, United Status and United Kingdom. The Price Index was of 65% and all the articles were published in the last 20 years. Conclusions: The Price Index highlights the innovativeness of this practice. The articles related to nutritional support are heterogeneous with respect to data and population, which exposes this as a limitation for a combined analysis.
Resumo:
The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the second type and when A is a symmetric positive definite matrix using a P -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix A is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix A is symmetric positive definite and the multisplittings are P -regular, the schemes are also convergent.
Resumo:
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
Resumo:
The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment. However usually the huge amount of 3D information is difficult to manage due to the fact that the robot storage system and computing capabilities are insufficient. Therefore, a data compression method is necessary to store and process this information while preserving as much information as possible. A few methods have been proposed to compress 3D information. Nevertheless, there does not exist a consistent public benchmark for comparing the results (compression level, distance reconstructed error, etc.) obtained with different methods. In this paper, we propose a dataset composed of a set of 3D point clouds with different structure and texture variability to evaluate the results obtained from 3D data compression methods. We also provide useful tools for comparing compression methods, using as a baseline the results obtained by existing relevant compression methods.
Resumo:
In the current Information Age, data production and processing demands are ever increasing. This has motivated the appearance of large-scale distributed information. This phenomenon also applies to Pattern Recognition so that classic and common algorithms, such as the k-Nearest Neighbour, are unable to be used. To improve the efficiency of this classifier, Prototype Selection (PS) strategies can be used. Nevertheless, current PS algorithms were not designed to deal with distributed data, and their performance is therefore unknown under these conditions. This work is devoted to carrying out an experimental study on a simulated framework in which PS strategies can be compared under classical conditions as well as those expected in distributed scenarios. Our results report a general behaviour that is degraded as conditions approach to more realistic scenarios. However, our experiments also show that some methods are able to achieve a fairly similar performance to that of the non-distributed scenario. Thus, although there is a clear need for developing specific PS methodologies and algorithms for tackling these situations, those that reported a higher robustness against such conditions may be good candidates from which to start.