3 resultados para Residue lignocellulosic

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated carbons with a highly developed mesoscale cavitation-linked structure have been prepared from natural products (e.g. peach stones) by combining chemical and physical activation processes. Characterization results show that these materials exhibit a large “apparent” surface area (∼1500 m2/g) together with a well-defined mesoporous structure, i.e. large cavities connected to the external surface through narrower mesoporous necks (cavitation effects).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size < 20 mm). However, its low calorific value and high emissions of polychlorinated dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.