4 resultados para Remedial teaching--Computer-assisted instruction.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present a new framework oriented to teach Computer Vision related subjects called JavaVis. It is a computer vision library divided in three main areas: 2D package is featured for classical computer vision processing; 3D package, which includes a complete 3D geometric toolset, is used for 3D vision computing; Desktop package comprises a tool for graphic designing and testing of new algorithms. JavaVis is designed to be easy to use, both for launching and testing existing algorithms and for developing new ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine the level of computer practical experience in a sample of Spanish nursing students. Each student was given a Spanish language questionnaire, modified from an original used previously with medical students at the Medical School of North Carolina University (USA) and also at the Education Unit of Hospital General Universitario del Mar (Spain). The 10-item self-report questionnaire probed for information about practical experience with computers. A total of 126 students made up the sample. The majority were female (80.2%; n=101). The results showed that just over half (57.1%, n=72) of the students had used a computer game (three or more times before), and that only one third (37.3%, n=47) had the experience of using a word processing package. Moreover, other applications and IT-based facilities (e.g. statistical packages, e-mail, databases, CD-ROM searches, programming languages and computer-assisted learning) had never been used by the majority of students. The student nurses' practical experience was less than that reported for medical students in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with enfasis on readability and understanding rather than on efficiency. However, the library can also be used for research purposes. JavaVis is an open source Java library, oriented to the teaching of Computer Vision. It consists of a framework with several features that meet its demands. It has been designed to be easy to use: the user does not have to deal with internal structures or graphical interface, and should the student need to add a new algorithm it can be done simply enough. Once we sketch the library, we focus on the experience the student gets using this library in several computer vision courses. Our main goal is to find out whether the students understand what they are doing, that is, find out how much the library helps the student in grasping the basic concepts of computer vision. In the last four years we have conducted surveys to assess how much the students have improved their skills by using this library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a purposeful initiative to open new grounds for teaching Geometrical Optics. It is based on the creation of an innovative education networking involving academic staff from three Spanish universities linked together around Optics. Nowadays, students demand online resources such as innovative multimedia tools for complementing the understanding of their studies. Geometrical Optics relies on basics of light phenomena like reflection and refraction and the use of simple optical elements such as mirrors, prisms, lenses, and fibers. The mathematical treatment is simple and the equations are not too complicated. But from our long time experience in teaching to undergraduate students, we realize that important concepts are missed by these students because they do not work ray tracing as they should do. Moreover, Geometrical Optics laboratory is crucial by providing many short Optics experiments and thus stimulating students interest in the study of such a topic. Multimedia applications help teachers to cover those student demands. In that sense, our educational networking shares and develops online materials based on 1) video-tutorials of laboratory experiences and of ray tracing exercises, 2) different online platforms for student self-examinations and 3) computer assisted geometrical optics exercises. That will result in interesting educational synergies and promote student autonomy for learning Optics.