3 resultados para Regionalisation
em Universidad de Alicante
Resumo:
This paper presents a new approach to the delineation of local labour markets based on evolutionary computation. The main objective is the regionalisation of a given territory into functional regions based on commuting flows. According to the relevant literature, such regions are defined so that (a) their boundaries are rarely crossed in daily journeys to work, and (b) a high degree of intra-area movement exists. This proposal merges municipalities into functional regions by maximizing a fitness function that measures aggregate intra-region interaction under constraints of inter-region separation and minimum size. Real results are presented based on the latest database from the Census of Population in the Region of Valencia. Comparison between the results obtained through the official method which currently is most widely used (that of British Travel-to-Work Areas) and those from our approach is also presented, showing important improvements in terms of both the number of different market areas identified that meet the statistical criteria and the degree of aggregate intra-market interaction.
Resumo:
The delineation of functional economic areas, or market areas, is a problem of high practical relevance, since the delineation of functional sets such as economic areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other OECD countries are the basis of many statistical operations and policy making decisions at local level. This is a combinatorial optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must reach a minimum size and self-containment level, and must be continuous. Although these optimisation problems have been typically solved through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper we propose a new set of group-based mutation operators, featuring general operations over disjoint groups, tailored to ensure that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our results with those from previous approaches shows that the proposed algorithm systematically improves them in terms of both quality and processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.
Resumo:
Due to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.