4 resultados para Reactive power support
em Universidad de Alicante
Resumo:
PCDD/F emissions from three light-duty diesel vehicles–two vans and a passenger car–have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 minutes and the following 60 minutes of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm3 for a 2004 model year van and 490-580 pg I-TEQ/Nm3 for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm3) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm3. All the results are discussed and compared with literature.
Resumo:
Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.
Resumo:
Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.
Resumo:
Immobilization and purification of enzymes are usual requirements for their industrial use. Both purification and immobilization have a common factor: they use a solid activated support. Using a support for enzyme purification means having mild conditions for enzyme release and a selective enzyme–support interaction is interesting. When using a support for immobilization, however, enzyme desorption is a problem. The improvement of enzyme features through immobilization is a usual objective (e.g., stability, selectivity). Thus, a support designed for enzyme purification and a support designed for enzyme immobilization may differ significantly. In this review, we will focus our attention on the requirements of a support surface to produce the desired objectives. The ideal physical properties of the matrix, the properties of the introduced reactive groups, the best surface activation degree to reach the desired objective, and the properties of the reactive groups will be discussed.