3 resultados para Reactions of borane and cyanoborane with amines and phosphine

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalene and biphenyl dianions are interesting compounds that can be obtained by double reduction of the corresponding arenes in solution with certain alkali metals. These dianions are highly reactive and rather elusive species with very high laying and highly delocalized electrons. They share many aspects of the reactivity of the alkali metal they originated from and consequently behave primarily as strong electron transfer (ET) reagents. We report here kinetic evidence for a different type of reactivity in their alkylation reactions with alkyl fluorides. By using cyclopropylmethyl fluoride (c-C3H5CH2F) as a very fast radical probe, we were able to settle that this alkylation does not involve the classical electron transfer reaction followed by radical coupling between diffusing radicals, but supports the alternative SN2 concerted mechanism, discerning thus this mechanistic SN2-ET dichotomy.