3 resultados para Rate Equation (Re) Model

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closed miscibility gaps in ternary liquid mixtures, at constant temperature and pressure, are obtained if phase separations occur only in the ternary region, whilst all binary mixtures involved in the system are completely miscible. This type of behaviour, although not very frequent, has been observed for a certain number of systems. Nevertheless, we have found no information about the applicability of the common activity coefficient models, as NRTL and UNIQUAC, for these types of ternary systems. Moreover, any of the island type systems published in the most common liquid–liquid equilibrium data collections, are correlated with any model. In this paper, the applicability of the NRTL equation to model the LLE of island type systems is assessed using topological concepts related to the Gibbs stability test. A first attempt to correlate experimental LLE data for two island type ternary systems is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <105 s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and "super-magnetars" having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 "super-magnetars" formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.