5 resultados para Ramp coordination

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research is to characterize the coordination of the processes of approximation related to the understanding of the limit of a function. We analyze the answers of 64 post-secondary school students to 7 problems considering the dynamic and metric conception of limit of a function. Results indicate that the metric understanding of the limit in terms of inequality supports that the student is capable of coordinating the approximations in the domain and in the range when lateral approximations coincide. However, the student is not capable of this coordination when lateral approximations do not coincide. This indicates that the metric understanding of the limit begins with the previous construction of the dynamic conception in case of coincidence of the lateral approximations in the range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination polymers (CPs) and metal–organic frameworks (MOFs) are among the most prolific research areas of inorganic chemistry and crystal engineering in the last 15 years, and yet it still seems that consensus is lacking about what they really are, or are not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of synthetic routes for the tailoring of efficient silica-based heterogeneous catalysts functionalized with coordination complexes or metallic nanoparticles has become a important goal in chemistry. Most of these techniques have been based on postsynthetic treatments of preformed silicas. Nevertheless, there is an emerging approach, so-called sol–gel coordination chemistry, based on co-condensation during the sol–gel preparation of the hybrid material of the corresponding complex or nanoparticle modified with terminal trialkoxysilane groups with a silica source (such as tetraethoxysilane) and in the presence of an adequate surfactant. This method leads to the production of new mesoporous metal complex-silica materials, with the metallic functionality incorporated homogeneously into the structure of the hybrid material, improving the stability of the coordination complex (which is protected by the silica network) and reducing the leaching of the active phase. This technique also offers the actual possibility of functionalizing silica or other metal oxides for a wider range of applications, such as photonics, sensing, and biochemical functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of terms, definitions, and recommendations is provided for use in the classification of coordination polymers, networks, and metal–organic frameworks (MOFs). A hierarchical terminology is recommended in which the most general term is coordination polymer. Coordination networks are a subset of coordination polymers and MOFs a further subset of coordination networks. One of the criteria an MOF needs to fulfill is that it contains potential voids, but no physical measurements of porosity or other properties are demanded per se. The use of topology and topology descriptors to enhance the description of crystal structures of MOFs and 3D-coordination polymers is furthermore strongly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexahydride complex OsH6(PiPr3)2 (1) activates the C–OMe bond of 1-(2-methoxy-2-oxoethyl)-3-methylimidazolium chloride (2), in addition to promoting the direct metalation of the imidazolium group, to afford a five-coordinate OsCl(acyl-NHC)(PiPr3)2 (3) compound. The latter coordinates carbon monoxide, oxygen, and molecular hydrogen to give the corresponding carbonyl (4), dioxygen (5), and dihydrogen (6) derivatives. Complex 3 also promotes the heterolytic bond activation of pinacolborane (HBpin), using the acyl oxygen atom as a pendant Lewis base. The hydride ligand and the Bpin substituent of the Fischer-type carbene of the resulting complex 7 activate the O–H bond of alcohols and water. As a consequence, complex 3 is a metal ligand cooperating catalyst for the generation of molecular hydrogen, by means of both the alcoholysis and hydrolysis of pinacolborane, via the intermediates 7 and 6.