5 resultados para Radionuclide Tomography
em Universidad de Alicante
Resumo:
In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages.
Resumo:
Purpose: To evaluate postoperative spectral-domain optical coherence tomography findings after macular hole surgery. Methods: Retrospective, interventional, nonrandomized study. Overall, 164 eyes of 157 patients diagnosed with macular hole were operated on by vitrectomy and internal limiting membrane peeling. Preoperative and postoperative best-corrected visual acuity and spectral-domain optical coherence tomography images were obtained. Two groups were considered on the basis of the postoperative integrity of the back reflection line from the ellipsoid portion of the photoreceptor inner segment: group A (disruption of ellipsoid portion of the inner segment line, 60 eyes) and group B (restoration of ellipsoid portion of the inner segment line, 104 eyes). Results: Logarithm of the minimum angle of resolution best-corrected visual acuity improved significantly after the surgery of macular hole from a mean preoperative value of 0.79 ± 0.37 (range, 0.15–2.00) to a mean postoperative value of 0.35 ± 0.31 (range, 0.00–1.30) at the last follow-up visit (P < 0.01). Best-corrected visual acuity improved significantly in the 2 groups analyzed (all P < 0.01). A larger improvement was found in group B than in group A (P < 0.01). Conclusion: Ellipsoid portion of the inner segment line reconstruction seems to be a good prognostic factor for visual rehabilitation after macular hole surgery.
Resumo:
The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.
Resumo:
Purpose: To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. Methods: Homozygous albino P23H rats, Sprague–Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. Results: During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. Conclusion: We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.
Resumo:
This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.