3 resultados para Radar in navigation
em Universidad de Alicante
Resumo:
The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-seat town of Badong, located on the south shore between the Xiling and Wu gorges of the Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges Project, since the new Three Gorges reservoir completely submerged the location of the old city. The instability of the slope is affecting the new town by causing residential safety problems. The Huangtupo landslide provides scientists an opportunity to understand landslide response to fluctuating river water level and heavy rainfall episodes, which is essential to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar (InSAR) techniques provide a very useful tool for the study of superficial and spatially variable displacement phenomena. In this paper, three sets of radar data have been processed to investigate the Huangtupo landslide. Results show that maximum displacements are affecting the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot landslide) exhibit a stable behaviour in agreement with in situ data, although some active areas have been recognized in the foot of the Substation landslide and Garden Spot landslide. InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped recognize the different displacement patterns on the slope and their relationships with various triggering factors. For those persistent scatterers, which exhibit long-term displacements, they can be decomposed into a creep model (controlled by geological conditions) and a superimposed recoverable term (dependent on external factors), which appears closely correlated with reservoir water level changes close to the river's edge. These results, combined with in situ data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its management.
Resumo:
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.